Bertrand Busson

Learn More
A combined approach, using synchrotron radiation-based diffraction and infrared microspectrometry, has been used to study the structure and molecular composition of hair samples. These methods allowed us to get an insight at different structural scales into the composition and structure of hair. Firstly, information about the configuration of amino-acid(More)
The origin of the 5.15-A meridional reflection on hard alpha-keratin X-ray diffraction patterns is discussed in terms of side-chains conformations. We show it to reveal specific configurations of the side chains which are common to all two-stranded alpha-helical coiled coils. Combining literature data on crystallised coiled coil pieces and molecular(More)
Nonlinear optical Sum and Difference-Frequency spectroscopies are used to probe and model the surface of thiophenol-functionalised gold nanoparticles grafted on a Si(100) substrate through two different silanization procedures. By scanning the [980-1100 cm(-1)] infrared spectral range with the CLIO Free Electron Laser, ring deformation vibrations of(More)
Low-angle X-ray scattering patterns of hard alpha-keratin fibers have been studied for more than 50 years but a completely convincing modelling has never been presented. The models which have been proposed so far are specific to the sample and cannot be adapted to others, mainly because they do not use a parametric analytical expression of the distribution(More)
This paper deals with the alpha-helical coiled coil secondary structure of proteins, which is found not only in many fibrous proteins but also in globular proteins. The standard model used nowadays to describe a coiled coil structure is derived from the mathematical description established more than 40 years ago by F. H. C. Crick (1953, Acta Crystallogr. 6,(More)
The notion of a paracrystal is particularly well adapted to the calculation of the scattering interference function of distorted crystallographic lattices in which the long-range order does not exist. However, classical paracrystal modelling cannot be used directly for hexagonal lattices because it does not respect the hexagonal symmetry. Here an analytical(More)
We use sum-frequency generation spectroscopy (SFG) in the infrared 2800–3000 cm−1 spectral range and UV–vis spectroscopy (transmission) in the 450–650 nm spectral range in order to characterize vibrational and electronic properties of various interfaces composed of organic monolayers adsorbed on gold nanoparticles (AuNPs) with 19 nm average diameter. SFG(More)
Sum frequency generation (SFG) and difference frequency generation (DFG) are applied to study vibrational resonance of the thiophenol molecule adsorbed on two different gold samples. One sample is made of 17 nm gold nanoparticles (AuNPs) fixed on a silicon substrate that has been previously functionalized with a silane monolayer (aminopropyltriethoxysilane,(More)
In this paper we report an in situ electrochemical Sum-/Difference Frequency Generation (SFG/DFG) spectroscopy investigation of the adsorption of nitrile and CN⁻ from the ionic liquid 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ([BMP][TFSA]) containing 4-{2-[1-(2-cyanoethyl)-1,2,3,4-tetrahydroquinolin-6-yl]-diazenyl}benzonitrile (CTDB)(More)