Learn More
Caffeine is believed to act by blocking adenosine A(1) and A(2A) receptors (A(1)R, A(2A)R), indicating that some A(1) receptors are tonically activated. We generated mice with a targeted disruption of the second coding exon of the A(1)R (A(1)R(-/-)). These animals bred and gained weight normally and had a normal heart rate, blood pressure, and body(More)
Increasing evidence suggests that antagonistic interactions between specific subtypes of adenosine and dopamine receptors in the basal ganglia are involved in the motor depressant effects of adenosine receptor agonists and the motor stimulant effects of adenosine receptor antagonists, such as caffeine. The GABAergic striatopallidal neurons are regulated by(More)
Dopamine D(1), dopamine D(2), and adenosine A(2A) receptors are highly expressed in striatal medium-sized spiny neurons. We have examined, in vivo, the influence of these receptors on the state of phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). DARPP-32 is a potent endogenous inhibitor of protein phosphatase-1, which(More)
Since high-affinity adenosine A2 receptors (A2a) are localized exclusively in dopamine-rich regions in the central nervous system and mediate inhibition of locomotor activity, we have examined the effect of A2a receptor activation on D1 and D2 receptor binding in membrane preparations of the rat striatum. The A2a agonist(More)
Caffeine has been imbibed since ancient times in tea and coffee, and more recently in colas. Caffeine owes its psychostimulant action to a blockade of adenosine A(2A) receptors, but little is known about its intracellular mechanism of action. Here we show that the stimulatory effect of caffeine on motor activity in mice was greatly reduced following genetic(More)
Caffeine, a component of tea, coffee and cola, induces wakefulness. It binds to adenosine A1 and A2A receptors as an antagonist, but the receptor subtype mediating caffeine-induced wakefulness remains unclear. Here we report that caffeine at 5, 10 and 15 mg kg(-1) increased wakefulness in both wild-type mice and A1 receptor knockout mice, but not in A2A(More)
It is well known that the nucleoside adenosine exerts a modulatory influence in the central nervous system by activating G protein coupled receptors. Adenosine A2A receptors, the subject of the present review, are predominantly expressed in striatum, the major area of the basal ganglia. Activation of A2A receptors interferes with effects mediated by most of(More)
In the 10 years since our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations. However, there have been so many other developments that an update is needed. The fact that the structure of one of the adenosine(More)