Bertil B. Fredholm

Learn More
Section of Molecular Neuropharmacology (B.B.F., J.H.), Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Behavioural Biology Laboratory (K.B.), Swiss Federal Institute of Technology, Zürich, Switzerland; INSERM U 398 (A.N.), Faculté de Médecine, Strasbourg Cedex, France; Department of Psychopharmacology (E.E.Z.), Valdman(More)
Four adenosine receptors have been cloned and characterized from several mammalian species. The receptors are named adenosine A(1), A(2A), A(2B), and A(3). The A(2A) and A(2B) receptors preferably interact with members of the G(s) family of G proteins and the A(1) and A(3) receptors with G(i/o) proteins. However, other G protein interactions have also been(More)
Increasing evidence suggests that antagonistic interactions between specific subtypes of adenosine and dopamine receptors in the basal ganglia are involved in the motor depressant effects of adenosine receptor agonists and the motor stimulant effects of adenosine receptor antagonists, such as caffeine. The GABAergic striatopallidal neurons are regulated by(More)
It is well known that the nucleoside adenosine exerts a modulatory influence in the central nervous system by activating G protein coupled receptors. Adenosine A2A receptors, the subject of the present review, are predominantly expressed in striatum, the major area of the basal ganglia. Activation of A2A receptors interferes with effects mediated by most of(More)
In the 10 years since our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations. However, there have been so many other developments that an update is needed. The fact that the structure of one of the adenosine(More)
Four adenosine receptor subtypes of the family of G protein-coupled receptors, designated A1, A2A, A2B and A3 are currently known. In this study all human subtypes were stably transfected into Chinese hamster ovary (CHO) cells in order to be able to study their pharmacological profile in an identical cellular background utilizing radioligand binding studies(More)
Caffeine is believed to act by blocking adenosine A(1) and A(2A) receptors (A(1)R, A(2A)R), indicating that some A(1) receptors are tonically activated. We generated mice with a targeted disruption of the second coding exon of the A(1)R (A(1)R(-/-)). These animals bred and gained weight normally and had a normal heart rate, blood pressure, and body(More)
Adenosine is formed inside cells or on their surface, mostly by breakdown of adenine nucleotides. The formation of adenosine increases in different conditions of stress and distress. Adenosine acts on four G-protein coupled receptors: two of them, A(1) and A(3), are primarily coupled to G(i) family G proteins; and two of them, A(2A) and A(2B), are mostly(More)