Learn More
Four adenosine receptors have been cloned and characterized from several mammalian species. The receptors are named adenosine A(1), A(2A), A(2B), and A(3). The A(2A) and A(2B) receptors preferably interact with members of the G(s) family of G proteins and the A(1) and A(3) receptors with G(i/o) proteins. However, other G protein interactions have also been(More)
The potency of adenosine and inosine as agonists at human adenosine receptors was examined in a functional assay using changes in cyclic AMP (cAMP) formation in intact Chinese hamster ovary (CHO) cells stably transfected with the human A1, A2A, A2B, and A3 receptors. Adenosine increased cAMP formation in cells expressing the A2A (EC(50): 0.7 microM) and A2B(More)
Caffeine is believed to act by blocking adenosine A(1) and A(2A) receptors (A(1)R, A(2A)R), indicating that some A(1) receptors are tonically activated. We generated mice with a targeted disruption of the second coding exon of the A(1)R (A(1)R(-/-)). These animals bred and gained weight normally and had a normal heart rate, blood pressure, and body(More)
Increasing evidence suggests that antagonistic interactions between specific subtypes of adenosine and dopamine receptors in the basal ganglia are involved in the motor depressant effects of adenosine receptor agonists and the motor stimulant effects of adenosine receptor antagonists, such as caffeine. The GABAergic striatopallidal neurons are regulated by(More)
Dopamine D(1), dopamine D(2), and adenosine A(2A) receptors are highly expressed in striatal medium-sized spiny neurons. We have examined, in vivo, the influence of these receptors on the state of phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). DARPP-32 is a potent endogenous inhibitor of protein phosphatase-1, which(More)
The purine nucleoside adenosine acts via four distinct adenosine receptor subtypes: the adenosine A(1), A(2A), A(2B), and A(3) receptor. They are all G protein-coupled receptors (GPCR) coupling to classical second messenger pathways such as modulation of cAMP production or the phospholipase C (PLC) pathway. In addition, they couple to mitogen-activated(More)
A ketogenic diet (KD) is a high-fat, low-carbohydrate metabolic regimen; its effectiveness in the treatment of refractory epilepsy suggests that the mechanisms underlying its anticonvulsive effects differ from those targeted by conventional antiepileptic drugs. Recently, KD and analogous metabolic strategies have shown therapeutic promise in other(More)
Adenosine is formed inside cells or on their surface, mostly by breakdown of adenine nucleotides. The formation of adenosine increases in different conditions of stress and distress. Adenosine acts on four G-protein coupled receptors: two of them, A(1) and A(3), are primarily coupled to G(i) family G proteins; and two of them, A(2A) and A(2B), are mostly(More)