Learn More
Blood-brain barrier (BBB) dysfunction is a major hallmark of many neurological diseases, including multiple sclerosis (MS). Using a genomics approach, we defined a microRNA signature that is diminished at the BBB of MS patients. In particular, miR-125a-5p is a key regulator of brain endothelial tightness and immune cell efflux. Our findings suggest that(More)
To ensure efficient energy supply to the high demanding brain, nutrients are transported into brain cells via specific glucose (GLUT) and monocarboxylate transporters (MCT). Mitochondrial dysfunction and altered glucose metabolism are thought to play an important role in the progression of neurodegenerative diseases, including multiple sclerosis (MS). Here,(More)
Multiple sclerosis (MS) is a chronic neuro-inflammatory disorder, which is marked by the invasion of the central nervous system by monocyte-derived macrophages and autoreactive T cells across the brain vasculature. Data from experimental animal models recently implied that the passage of leukocytes across the brain vasculature is preceded by their traversal(More)
The blood-brain barrier (BBB) is crucial in the maintenance of a controlled environment within the brain to safeguard optimal neuronal function. The endothelial cells (ECs) of the BBB possess specific properties that restrict the entry of cells and metabolites into the CNS. The specialized BBB endothelial phenotype is induced during neurovascular(More)
There is growing evidence that mitochondrial dysfunction and associated reactive oxygen species (ROS) formation contribute to neurodegenerative processes in multiple sclerosis (MS). Here, we investigated whether alterations in transcriptional regulators of key mitochondrial proteins underlie mitochondrial dysfunction in MS cortex and contribute to neuronal(More)
Homeostasis of the brain is dependent on the blood-brain barrier (BBB). This barrier tightly regulates the exchange of essential nutrients and limits the free flow of immune cells into the CNS. Perturbations of BBB function and the loss of its immune quiescence are hallmarks of a variety of brain diseases, including multiple sclerosis (MS), vascular(More)
Normal neuronal functioning is dependent on the blood-brain barrier. This barrier is confined to specialized brain endothelial cells lining the inner vessel wall, and tightly controlling transport of nutrients, efflux of potentially harmful molecules and entry of immune cells into the brain. Loss of blood-brain barrier function is an early and significant(More)
Multiple sclerosis (MS) lesions are characterized by the presence of activated astrocytes, which are thought to actively take part in propagating lesion progression by secreting pro-inflammatory mediators. Conversely, reactive astrocytes may exert disease-dampening effects through the production of trophic factors and anti-inflammatory mediators. Astrocytic(More)
The sphingosine 1-phosphate (S1P) receptor modulator FTY720P (Gilenya®) potently reduces relapse rate and lesion activity in the neuroinflammatory disorder multiple sclerosis. Although most of its efficacy has been shown to be related to immunosuppression through the induction of lymphopenia, it has been suggested that a number of its beneficial effects are(More)
Alterations in sphingolipid metabolism are described to contribute to various neurological disorders. We here determined the expression of enzymes involved in the sphingomyelin cycle and their products in postmortem brain tissue of multiple sclerosis (MS) patients. In parallel, we investigated the effect of the sphingosine-1 receptor agonist Fingolimod(More)