Bert Blocken

Learn More
Computational Fluid Dynamics (CFD) is increasingly used to predict wind flow and pollutant dispersion around buildings. The two most frequently used approaches are solving the Reynolds-averaged Navier-Stokes (RANS) equations and Large-Eddy Simulation (LES). In the present study, we compare the convective and turbulent mass fluxes predicted by these two(More)
Computational Fluid Dynamics (CFD) is increasingly used to study a wide variety of complex Environmental Fluid Mechanics (EFM) processes, such as water flow and turbulent mixing of contaminants in rivers and estuaries and wind flow and air pollution dispersion in urban areas. However, the accuracy and reliability of CFD modeling and the correct use of CFD(More)
Y-NC-ND license. Abstract The global trend towards urbanisation explains the growing interest in the study of the modification of the urban climate due to the heat island effect and global warming, and its impact on energy use of buildings. Also urban comfort, health and durability, referring respectively to pedestrian wind/ thermal comfort, pollutant(More)
Wind flow in urban environments is an important factor governing the dispersion of heat and pollutants from streets, squares and buildings. This paper presents a coupled CFD modelling approach for urban wind flow and indoor natural ventilation. A specific procedure is used to efficiently and simultaneously generate the geometry and the high-resolution(More)
Three different cyclist positions were evaluated with Computational Fluid Dynamics (CFD) and wind-tunnel experiments were used to provide reliable data to evaluate the accuracy of the CFD simulations. Specific features of this study are: (1) both steady Reynolds-averaged Navier-Stokes (RANS) and unsteady flow modelling, with more advanced turbulence(More)
Flow and dispersion of traffic-emitted pollutants were studied in a generic urban neighborhood for various avenue-tree layouts by employing 3D steady RANS simulations with the realizable k-ε turbulence model. In comparison to the tree-free situation quantitative and qualitative changes with flow reversal in the wind field were observed. Low to moderate(More)
The transpirational cooling of vegetation as a measure to mitigate outdoor air temperatures was investigated for a street canyon in the city center of Arnhem, the Netherlands for the meteorological conditions of an afternoon hour on a hot summer day during a heat wave with wind of speed 5.1 m s 1 at 10 m above ground and direction along the canyon.(More)
This paper discusses a procedure for the two-way run time external coupling between Building Energy Simulation (BES) and building envelope Heat, Air and Moisture (HAM) programs for enhanced wholebuilding simulation. The coupling procedure presented here involves a description of the relevant physical phenomena at the interface between the programs, domain(More)
Wind comfort and wind safety for pedestrians are important requirements in urban areas. Many city authorities request studies of pedestrian wind comfort and wind safety for new buildings and new urban areas. These studies involve combining statistical meteorological data, aerodynamic information and criteria for wind comfort and wind safety. Detailed(More)