Learn More
Pedestrian detection is a key problem in computer vision, with several applications that have the potential to positively impact quality of life. In recent years, the number of approaches to detecting pedestrians in monocular images has grown steadily. However, multiple data sets and widely varying evaluation protocols are used, making direct comparisons(More)
— This paper presents a novel method for detecting and localizing objects of a visual category in cluttered real-world scenes. Our approach considers object categorization and figure-ground segmentation as two interleaved processes that closely collaborate towards a common goal. As shown in our work, the tight coupling between those two processes allows(More)
We present a method for object categorization in real-world scenes. Following a common consensus in the field, we do not assume that a figure-ground segmentation is available prior to recognition. However, in contrast to most standard approaches for object class recognition, our approach automatically segments the object as a result of the categorization.(More)
Visual understanding of complex urban street scenes is an enabling factor for a wide range of applications. Object detection has benefited enormously from large-scale datasets, especially in the context of deep learning. For semantic urban scene understanding, however, no current dataset adequately captures the complexity of real-world urban scenes. To(More)
Non-rigid object detection and articulated pose estimation are two related and challenging problems in computer vision. Numerous models have been proposed over the years and often address different special cases, such as pedestrian detection or upper body pose estimation in TV footage. This paper shows that such specialization may not be necessary, and(More)
Object recognition has reached a level where we can identify a large number of previously seen and known objects. However, the more challenging and important task of categorizing previously unseen objects remains largely unsolved. Traditionally, contour and shape based methods are regarded most adequate for handling the generalization requirements needed(More)
Despite impressive progress in people detection the performance on challenging datasets like Caltech Pedestrians or TUD-Brussels is still unsatisfactory. In this work we show that motion features derived from optic flow yield substantial improvements on image sequences, if implemented correctly — even in the case of low-quality video and consequently(More)
While activity recognition is a current focus of research the challenging problem of fine-grained activity recognition is largely overlooked. We thus propose a novel database of 65 cooking activities, continuously recorded in a realistic setting. Activities are distinguished by fine-grained body motions that have low inter-class variability and high(More)
Pedestrian detection is a key problem in computer vision, with several applications including robotics, surveillance and automotive safety. Much of the progress of the past few years has been driven by the availability of challenging public datasets. To continue the rapid rate of innovation, we introduce the Caltech Pedestrian Dataset, which is two orders(More)
Current top performing object detectors employ detection proposals to guide the search for objects, thereby avoiding exhaustive sliding window search across images. Despite the popularity and widespread use of detection proposals, it is unclear which trade-offs are made when using them during object detection. We provide an in-depth analysis of twelve(More)