Bernhard Schmitzer

Learn More
We gradually develop a novel functional for joint variational object segmentation and shape matching. The formulation, based on the Wasserstein distance, allows modelling of local object appearance, statistical shape variations and geometric invariance in a uniform way. For learning of class typical shape variations we adopt a recently presented approach(More)
We present a novel convex shape prior functional with potential for application in variational image segmentation. Starting point is the Gromov-Wasserstein Distance which is successfully applied in shape recognition and classification tasks but involves solving a non-convex optimization problem and which is non-convex as a function of the involved shape(More)
We introduce a novel geometric approach to the image labeling problem. Abstracting from specific labeling applications, a general objective function is defined on a manifold of stochastic matrices , whose elements assign prior data that are given in any metric space, to observed image measurements. The corresponding Riemannian gradient flow entails a set of(More)
A functional for joint variational object segmentation and shape matching is developed. The formulation is based on optimal transport w.r.t. geometric distance and local feature similarity. Geometric invariance and modelling of object-typical statistical variations is achieved by introducing degrees of freedom that describe transformations and deformations(More)
Discrete optimal transport solvers do not scale well on dense large problems since they do not explicitly exploit the geometric structure of the cost function. In analogy to continuous optimal transport, we provide a framework to verify global optimality of a discrete transport plan locally. This allows the construction of an algorithm to solve large dense(More)