Learn More
The cerebral magnetic field of the auditory steady-state response (SSR) to sinusoidal amplitude-modulated (SAM) tones was recorded in healthy humans. The waveforms of underlying cortical source activity were calculated at multiples of the modulation frequency using the method of source space projection, which improved the signal-to-noise ratio (SNR) by a(More)
Acoustic stimuli are processed throughout the auditory projection pathway, including the neocortex, by neurons that are aggregated into 'tonotopic' maps according to their specific frequency tunings. Research on animals has shown that tonotopic representations are not statically fixed in the adult organism but can reorganize after damage to the cochlea or(More)
Moving in synchrony with an auditory rhythm requires predictive action based on neurodynamic representation of temporal information. Although it is known that a regular auditory rhythm can facilitate rhythmic movement, the neural mechanisms underlying this phenomenon remain poorly understood. In this experiment using human magnetoencephalography, 12 young(More)
Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields showed(More)
Hemispheric asymmetries during auditory sensory processing were examined using whole-head magnetoencephalographic recordings of auditory evoked responses to monaurally and binaurally presented amplitude-modulated sounds. Laterality indices were calculated for the transient onset responses (P1m and N1m), the transient gamma-band response, the sustained field(More)
Neural imaging studies have shown that the brains of skilled musicians respond differently to musical stimuli than do the brains of non-musicians, particularly for musicians who commenced practice at an early age. Whether brain attributes related to musical skill are attributable to musical practice or are hereditary traits that influence the decision to(More)
EEG and MEG were simultaneously recorded to study the visual gamma-band (30-70 Hz) responses. The electrical gamma-band response phase-locked to stimulus onset can be subdivided into a central component at 39 Hz and an occipital component at 36 Hz. A new high-frequency magnetic phase-locked response recorded over the occipital lobe is described. Its(More)
The threshold for detecting amplitude modulation (AM) decreases with increasing duration of the AM sound up to several hundred milliseconds. If the auditory evoked steady-state response (SSR) to AM sound is an electrophysiological correlate of AM processing in the human brain, the development of the SSR should follow this course of temporal integration.(More)
40-Hz auditory steady state responses to amplitude modulated tones were recorded with magnetoencephalography to investigate the effect of focused attention. A modulation discrimination task and a destructive visual task established the attended and the non-attended experimental conditions. A strong contrast between these conditions was demonstrated by(More)
The hypothesis that gamma-band oscillations are related to the representation of an environmental scene in the cerebral cortex after binding of corresponding perceptual elements is currently under discussion. One question is how the sensory system reacts to a fast change in the scene if perceptual elements are rigidly bound together. A reset of the(More)