Bernhard Pfahringer

Learn More
More than twelve years have elapsed since the first public release of WEKA. In that time, the software has been rewritten entirely from scratch, evolved substantially and now accompanies a text on data mining [35]. These days, WEKA enjoys widespread acceptance in both academia and business, has an active community, and has been downloaded more than 1.4(More)
The widely known binary relevance method for multi-label classification, which considers each label as an independent binary problem, has often been overlooked in the literature due to the perceived inadequacy of not directly modelling label correlations. Most current methods invest considerable complexity to model interdependencies between labels. This(More)
Massive Online Analysis (MOA) is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA includes a collection of offline and online methods as well as tools for evaluation. In particular, it implements boosting, bagging, and Hoeffding Trees, all with and without Naı̈ve Bayes classifiers(More)
Advanced analysis of data streams is quickly becoming a key area of data mining research as the number of applications demanding such processing increases. Online mining when such data streams evolve over time, that is when concepts drift or change completely, is becoming one of the core issues. When tackling non-stationary concepts, ensembles of(More)
This paper presents a pruned sets method (PS) for multi-label classification. It is centred on the concept of treating sets of labels as single labels. This allows the classification process to inherently take into account correlations between labels. By pruning these sets, PS focuses only on the most important correlations, which reduces complexity and(More)
WEKA is a popular machine learning workbench with a development life of nearly two decades. This article provides an overview of the factors that we believe to be important to its success. Rather than focussing on the software’s functionality, we review aspects of project management and historical development decisions that likely had an impact on the(More)
Despite its simplicity, the naive Bayes classifier has surprised machine learning researchers by exhibiting good performance on a variety of learning problems. Encouraged by these results, researchers have looked to overcome naive Bayes’ primary weakness—attribute independence—and improve the performance of the algorithm. This paper presents a locally(More)
Landmarking is a novel approach to describing tasks in meta-learning. Previous approaches to meta-learning mostly considered only statistics-inspired measures of the data as a source for the definition of metaattributes. Contrary to such approaches, landmarking tries to determine the location of a specific learning problem in the space of all learning(More)
In today’s applications, massive, evolving data streams are ubiquitous. Massive Online Analysis (MOA) is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA is designed to deal with the challenging problems of scaling up the implementation of state of the art algorithms to real world(More)