Bernhard Metz

Learn More
The direct adjustment of two-component pseudopotentials (scalar-relativistic + spin-orbit potentials), to atomic total energy valence spectra derived from four-component multiconfiguration Dirac-Hartree-Fock all-electron calculations based on the Dirac-Coulomb-Breit Hamiltonian, has been made a routine tool for an efficient treatment of heavy main-group(More)
Controlling the wettability between the porous electrode and the electrolyte in lithium-ion batteries can improve both the manufacturing process and the electrochemical performance of the cell. The wetting rate, which is the electrolyte transport rate in the porous electrode, can be quantified using the wetting balance. The effect of the calendering process(More)
Two-component and scalar relativistic energy-consistent pseudopotentials for the group 1 elements from K to element 119 are presented using nine electrons for the valence space definition. The accuracy of such an approximation is discussed for dipole polarizabilities and ionization potentials obtained at the coupled-cluster level as compared to experimental(More)
  • 1