Bernhard M. Riegl

Learn More
This review examines the substantial changes that have taken place in marine habitats and resources of the Gulf over the past decade. The habitats are especially interesting because of the naturally high levels of temperature and salinity stress they experience, which is important in a changing world climate. However, the extent of all natural habitats is(More)
A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation.(More)
Quantitative coral damage assessment by means of line transects was performed in several northern Red Sea coral reef sites in Israel (Eilat) and Egypt (Hurghada area). Reefs with high and low visitor frequency were compared. For both reef systems, breakage was found to be the most common damage category, being significantly higher on highly frequented(More)
Serge Andréfouët*, Philip Kramer, Damaris Torres-Pulliza, Karen E. Joyce, Eric J. Hochberg, Rodrigo Garza-Pérez, Peter J. Mumby, Bernhard Riegl, Hiroya Yamano, William H. White, Mayalen Zubia, John C. Brock, Stuart R. Phinn, Abdulla Naseer, Bruce G. Hatcher, Frank E. Muller-Karger a Institute for Marine Remote Sensing, College of Marine Science, University(More)
Climate change scenarios suggest an increase in tropical ocean temperature by 1-3°C by 2099, potentially killing many coral reefs. But Arabian/Persian Gulf corals already exist in this future thermal environment predicted for most tropical reefs and survived severe bleaching in 2010, one of the hottest years on record. Exposure to 33-35°C was on average(More)
We analysed spatial patterns of coral communities mapped from IKONOS satellite imagery in combination with 8 yr of traditional ecological monitoring data and archived sea-surface temperature data to explain why coral assemblages in the SE Arabian Gulf (Jebel Ali, Dubai) are impoverished and most do not build reefal frameworks. Analysis of archive(More)
We model coral community response to bleaching and mass mortality events which are predicted to increase in frequency with climate change. The model was parameterized for the Arabian/Persian Gulf, but is generally applicable. We assume three species groups (Acropora, faviids, and Porites) in two life-stages each where the juveniles are in competition but(More)
The diversity, abundance and distribution of reef fish are related to heterogeneity and physical complexity of benthic habitat. However, the field effort required to evaluate these aspects of the benthos in situ, at the scale of entire reefscapes, is greatly constrained by logistical and resource limitations. With moderate ground truthing, both substratum(More)
High-latitude reef communities consisting of typical Caribbean fauna of variable composition and density exist on four parallel ridges at varying depths along the Broward County (Florida, USA) coast. Two of these ridges, at 7–13 and 15–30 m in depth, are drowned early Holocene coral reefs of 5 and 7 ky uncorrected radiocarbon age. In this study, community(More)
Corals in the Arabian/Persian Gulf endure summer temperatures of up to 36°C, making them ideal subjects to study the mechanisms underlying thermal tolerance. Unexpectedly, we found the "generalist" Symbiodinium clade C3 to be the prevalent symbiont among seven coral species from Abu Dhabi (UAE) waters. Moreover, C3 represented the only dominant symbiont(More)