Bernhard Kainz

Learn More
We present a new GPU-based rendering system for ray casting of multiple volumes. Our approach supports a large number of volumes, complex translucent and concave polyhedral objects as well as CSG intersections of volumes and geometry in any combination. The system (including the rasterization stage) is implemented entirely in CUDA, which allows full control(More)
Real-time three-dimensional acquisition of real-world scenes has many important applications in computer graphics, computer vision and human-computer interaction. Inexpensive depth sensors such as the Microsoft Kinect allow to leverage the development of such applications. However, this technology is still relatively recent, and no detailed studies on its(More)
A common task in medical image analysis is the alignment of data from different sources, e.g., X-ray images and computed tomography (CT) data. Such a task is generally known as registration. We demonstrate the applicability of automatic differentiation (AD) techniques to a class of 2D/3D registration problems which are highly computationally intensive and(More)
Motion correction is a key element for imaging the fetal brain in-utero using Magnetic Resonance Imaging (MRI). Maternal breathing can introduce motion, but a larger effect is frequently due to fetal movement within the womb. Consequently, imaging is frequently performed slice-by-slice using single shot techniques, which are then combined into volumetric(More)
In this paper we present Softshell, a novel execution model for devices composed of multiple processing cores operating in a single instruction, multiple data fashion, such as graphics processing units (GPUs). The Softshell model is intuitive and more flexible than the kernel-based adaption of the stream processing model, which is currently the dominant(More)
In modern clinical practice, planning access paths to volumetric target structures remains one of the most important and most complex tasks, and a physician's insufficient experience in this can lead to severe complications or even the death of the patient. In this paper, we present a method for safety evaluation and the visualization of access paths to(More)
In this paper, we analyze the special requirements of a dynamic memory allocator that is designed for massively parallel architec-tures such as Graphics Processing Units (GPUs). We show that traditional strategies, which work well on CPUs, are not well suited for the use on GPUs and present the thorough design of ScatterAl-loc, which can efficiently deal(More)
Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to(More)
Figure 1: With our parallel approach to procedural architecture, large cities can be generated in less than a second on the GPU. The city overview shows a scene with 38 000 low-detail buildings generated in 290 ms (left). The 520 buildings in the skyscraper scene consist of 1.5 million terminal shapes evaluating to 8 million vertices and 4 million(More)