Learn More
In modern clinical practice, planning access paths to volumetric target structures remains one of the most important and most complex tasks, and a physician's insufficient experience in this can lead to severe complications or even the death of the patient. In this paper, we present a method for safety evaluation and the visualization of access paths to(More)
BACKGROUND Pulmonary hypertension is a disease characterized by an elevation in pulmonary arterial pressure that is diagnosed invasively via right heart catheterization. Such pathological altered pressures in the pulmonary vascular system should lead to changes in blood flow patterns in the main pulmonary artery. METHODS AND RESULTS Forty-eight subjects(More)
Volumetric data is common in medicine, geology and engineering , but the O(n 3) complexity in data and algorithms has prevented the widespread use of volume graphics. Recently, 3D image processing and visualization algorithms have been parallelized and ported to graphics processing units. Today, medical diagnostics highly depends on volu-metric imaging(More)
In this paper we present a semi-automatic method for analysis of the fetal thorax in genuine three-dimensional volumes. After one initial click we localize the spine and accurately determine the volume of the fetal lung from high resolution volumetric images reconstructed from motion corrupted prenatal Magnetic Resonance Imaging (MRI). We compare the(More)
Motion correction is a key element for imaging the fetal brain in-utero using Magnetic Resonance Imaging (MRI). Maternal breathing can introduce motion, but a larger effect is frequently due to fetal movement within the womb. Consequently, imaging is frequently performed slice-by-slice using single shot techniques, which are then combined into volumetric(More)
We present a new GPU-based rendering system for ray casting of multiple volumes. Our approach supports a large number of volumes, complex translucent and concave polyhedral objects as well as CSG intersections of volumes and geometry in any combination. The system (including the rasterization stage) is implemented entirely in CUDA, which allows full control(More)
Real-time three-dimensional acquisition of real-world scenes has many important applications in computer graphics, computer vision and human-computer interaction. Inexpensive depth sensors such as the Microsoft Kinect allow to leverage the development of such applications. However, this technology is still relatively recent, and no detailed studies on its(More)
Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms are,(More)