Bernhard A Mecking

Learn More
In an exclusive measurement of the reaction gammad-->K(+)K(-)pn, a narrow peak that can be attributed to an exotic baryon with strangeness S=+1 is seen in the K(+)n invariant mass spectrum. The peak is at 1.542+/-0.005 GeV/c(2) with a measured width of 0.021 GeV/c(2) FWHM, which is largely determined by experimental mass resolution. The statistical(More)
Beam-helicity asymmetries for the two-pion-photoproduction reaction gammap-->ppi(+)pi(-) have been studied for the first time in the resonance region for center-of-mass energies between 1.35 and 2.30 GeV. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer using circularly polarized tagged photons incident on an(More)
The reaction gamma p-->pi(+)K(-)K(+)n was studied at Jefferson Laboratory using a tagged photon beam with an energy range of 3-5.47 GeV. A narrow baryon state with strangeness S=+1 and mass M=1555+/-10 MeV/c(2) was observed in the nK(+) invariant mass spectrum. The peak's width is consistent with the CLAS resolution (FWHM=26 MeV/c(2)), and its statistical(More)
The longitudinal target-spin asymmetry AUL for the exclusive electroproduction of high-energy photons was measured for the first time in ep-->e;'pgamma. The data have been accumulated at JLab with the CLAS spectrometer using 5.7 GeV electrons and a longitudinally polarized NH3 target. A significant azimuthal angular dependence was observed, resulting from(More)
A direct measurement of the two photon exchange contribution to lepton-proton elastic scattering is proposed. This process is expected to explain the discrepancy observed between two methods of measuring the proton's G E /G M ratio. A definitive test of this assertion is possible via a high precision comparison of e + p and e − p elastic scattering. The(More)
We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic range. The kinetic energy distribution for "fast" nucleons (p>250 MeV/c) peaks where two nucleons each have 20% or less, and the third nucleon has most of the transferred energy. These fast pp and pn pairs are back to back with little momentum along the three-momentum transfer,(More)