Bernhard A. Kaplan

Learn More
Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and(More)
As it is confronted to inherent neural delays, how does the visual system create a coherent representation of a rapidly changing environment? In this paper, we investigate the role of motion-based prediction in estimating motion trajectories compensating for delayed information sampling. In particular, we investigate how anisotropic diffusion of information(More)
The organization of representations in the brain has been observed to locally reflect subspaces of inputs that are relevant to behavioral or perceptual feature combinations, such as in areas receptive to lower and higher-order features in the visual system. The early olfactory system developed highly plastic mechanisms and convergent evidence indicates that(More)
SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Rather than using bespoke analog or digital hardware, the basic computational unit of a SpiNNaker system is a general-purpose ARM processor, allowing it to be programmed to simulate a wide variety of neuron(More)
Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of(More)
In this work we present a large-scale three stage model of the early mammalian olfactory system, including the olfactory epithelium (OE), the olfactory bulb (OB) and the olfactory (piriform) cortex (OC). All neurons in the network are modeled with a single or few compartments using the Hodgkin-Huxley formalism and are implemented in the NEURON simulator for(More)
  • 1