Learn More
The ability of coronary endothelial cells in 14 day confluent cultures to metabolize glucose, palmitate, lactate and various amino acids was investigated. Under aerobic conditions, 99% of glucose, (5 mM) was degraded to lactate and only 0.04% was oxidized in the Krebs cycle. One percent of the glucose catabolized was directed into the hexose monophosphate(More)
BACKGROUND Resupply of oxygen to the myocardium after extended periods of ischemia or hypoxia can rapidly aggravate the already existing injury by provoking hypercontracture of cardiomyocytes (acute reperfusion injury). Previous studies indicated that halothane can protect ischemic-reperfused myocardium. The aim of the present study was to analyze on the(More)
When oxygen-deprived cardiomyocytes become energy depleted, they accumulate Na+ and Ca2+ in the cytosol. Influx of Ca2+ via the Na+/Ca2+ exchange mechanism seems to contribute to the development of Ca2+ overload, but Ca2+ overload may eventually also occur when this route is blocked. Hypoxic-reoxygenated cardiomyocytes in a state of severe overload of Na+(More)
The study had two aims: first, to improve the longevity of isolated adult cardiomyocytes in serum-free culture, and, second, to investigate whether catecholamines which promote hypertrophy in vivo can prolong survival of isolated adult rat cardiomyocytes in serum-free culture. The basic cell culture medium consists of serum-free medium 199 with 10(-7) M(More)
Reoxygenation after 120-min substrate-free anoxia causes sudden hypercontracture in isolated rat cardiomyocytes. Reoxygenated-hypercontracted cardiomyocytes maintain their sarcolemmal integrity as indicated by the absence of enzyme release and reestablish a nearly normal free energy change of ATP hydrolysis within 15 min [Siegmund, B., A. Koop, T. Klietz,(More)
Effects of Na+/H+ exchange inhibition and cytosolic acidosis on reoxygenated adult rat ventricular cardiomyocytes were investigated. Cells were incubated in anoxic media at pH 6.4 until pCa of < or = 5, intracellular pH (pHi) of 6.5, and cytosolic [Na+] of 50 mM were reached. On reoxygenation, medium pH was changed to 7.4 to activate Na+/H+ exchange. In one(More)
Isolated cardiomyocytes from adult rats were incubated in anoxic bicarbonate-buffered media at extracellular pH (pH(o)) 6.4 until a cytosolic Ca(2+) overload and intracellular pH (pH(i)) of 6.4 were reached. On reoxygenation, the pH of the medium was changed to 7.4 to activate the Na(+)/H(+)exchanger (NHE) and the Na(+)-HCO(-)(3) symporter (NBS). The(More)
The hypothesis that rat cardiomyocytes become susceptible to hypercontracture after anoxia/reoxygenation was investigated. The cells were gradually overloaded with Ca2+ after different periods of simulated ischemia (substrate-free anoxia, medium at pH 6.4) followed by 20 minutes of reoxygenation. The cytosolic Ca2+ concentration (measured with fura 2) at(More)
The ability of hypoxic-reoxygenated cardiomyocytes to recover from severe cytosolic Ca2+ overload was investigated using the fluorescent Ca2+ indicator fura-2 in ventricular cardiomyocytes from adult rats. When the fura-2 ratio (340/380 nm) reached saturation in hypoxic cardiomyocytes, indicating severe Ca2+ overload, they were reoxygenated. The cell then(More)