Learn More
In this paper, we present our design and experiments on a planar biped robot under the control of a pure sensor-driven controller. This design has some special mechanical features, for example small curved feet allowing rolling action and a properly positioned center of mass, that facilitate fast walking through exploitation of the robot’s natural dynamics.(More)
In this article, we present an isotropic unsupervised algorithm for temporal sequence learning. No special reward signal is used such that all inputs are completely isotropic. All input signals are bandpass filtered before converging onto a linear output neuron. All synaptic weights change according to the correlation of bandpass-filtered inputs with the(More)
In this review, we compare methods for temporal sequence learning (TSL) across the disciplines machine-control, classical conditioning, neuronal models for TSL as well as spike-timing-dependent plasticity (STDP). This review introduces the most influential models and focuses on two questions: To what degree are reward-based (e.g., TD learning) and(More)
Spike-timing-dependent plasticity (STDP) is described by long-term potentiation (LTP), when a presynaptic event precedes a postsynaptic event, and by long-term depression (LTD), when the temporal order is reversed. In this article, we present a biophysical model of STDP based on a differential Hebbian learning rule (ISO learning). This rule correlates(More)
Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely(More)
Currently all important, low-level, unsupervised network learning algorithms follow the paradigm of Hebb, where input and output activity are correlated to change the connection strength of a synapse. However, as a consequence, classical Hebbian learning always carries a potentially destabilizing autocorrelation term, which is due to the fact that every(More)
Embodied cognition suggests that complex cognitive traits can only arise when agents have a body situated in the world. The aspects of embodiment and situatedness are being discussed here from the perspective of linear systems theory. This perspective treats bodies as dynamic, temporally variable entities, which can be extended (or curtailed) at their(More)
Recent indirect experimental evidence suggests that synaptic plasticity changes along the dendrites of a neuron. Here we present a synaptic plasticity rule which is controlled by the properties of the pre- and postsynaptic signals. Using recorded membrane traces of back-propagating and dendritic spikes we demonstrate that LTP and LTD will depend(More)
In this article, we present an isotropic algorithm for sequence order learning. Its central goal is to learn the causal relation between two (or more) inputs in order to react to the earliest incoming signal after successful learning (like in typical classical conditioning situations). We implement this algorithm in a behaving system (a robot) thereby(More)
The simplest form of sensor-motor control is obtained with a reflex. In this case the reflex can be interpreted as part of a closed-loop control paradigm which measures a sensor input and generates a motor reaction as soon as the sensor signal deviates from its desired (resting) state. This is a typical case of feedback control. However, reflex reactions(More)