Learn More
In this paper, we present our design and experiments on a planar biped robot under the control of a pure sensor-driven controller. This design has some special mechanical features, for example small curved feet allowing rolling action and a properly positioned center of mass, that facilitate fast walking through exploitation of the robot's natural dynamics.(More)
In this review, we compare methods for temporal sequence learning (TSL) across the disciplines machine-control, classical conditioning, neuronal models for TSL as well as spike-timing-dependent plasticity (STDP). This review introduces the most influential models and focuses on two questions: To what degree are reward-based (e.g., TD learning) and(More)
Spike-timing-dependent plasticity (STDP) is described by long-term potentiation (LTP), when a presynaptic event precedes a postsynaptic event, and by long-term depression (LTD), when the temporal order is reversed. In this article, we present a biophysical model of STDP based on a differential Hebbian learning rule (ISO learning). This rule correlates(More)
Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely(More)
In this article, we present an isotropic unsupervised algorithm for temporal sequence learning. No special reward signal is used such that all inputs are completely isotropic. All input signals are bandpass filtered before converging onto a linear output neuron. All synaptic weights change according to the correlation of bandpass-filtered inputs with the(More)
The simplest form of sensor-motor control is obtained with a reflex. In this case the reflex can be interpreted as part of a closed-loop control paradigm which measures a sensor input and generates a motor reaction as soon as the sensor signal deviates from its desired (resting) state. This is a typical case of feedback control. However, reflex reactions(More)
Currently all important, low-level, unsupervised network learning algorithms follow the paradigm of Hebb, where input and output activity are correlated to change the connection strength of a synapse. However, as a consequence, classical Hebbian learning always carries a potentially destabilizing autocorrelation term, which is due to the fact that every(More)
A confusingly wide variety of temporally asymmetric learning rules exists related to reinforcement learning and/or to spike-timing dependent plasticity, many of which look exceedingly similar, while displaying strongly different behavior. These rules often find their use in control tasks, for example in robotics and for this rigorous convergence and(More)
Living creatures can learn or improve their behaviour by temporally correlating sensor cues where near-senses (e.g., touch, taste) follow after far-senses (vision, smell). Such type of learning is related to classical and/or operant conditioning. Algorithmically all these approaches are very simple and consist of single learning unit. The current study is(More)
Biped walking remains a difficult problem, and robot models can greatly facilitate our understanding of the underlying biomechanical principles as well as their neuronal control. The goal of this study is to specifically demonstrate that stable biped walking can be achieved by combining the physical properties of the walking robot with a small, reflex-based(More)