Bernd Laffert

Learn More
A highly conserved signaling property of Nef proteins encoded by human or simian immunodeficiency virus is the binding and activation of a PAK kinase whose function is unclear. Here we show that Nef-mediated p21-activated kinase (PAK) activation involves phosphatidylinositol 3-kinase, which acts upstream of PAK and is bound and activated by Nef similar to(More)
The Nef protein of human and primate lentiviruses is a key factor in HIV/SIV pathogenesis. Here we report that Nef associates with two different kinases, forming a multiprotein complex at the far N-terminus of the viral protein. One of the kinases was identified as Lck, whereas the second protein was found to be a serine kinase that phosphorylated Nef and(More)
During HIV/SIV infection, there is widespread programmed cell death in infected and, perhaps more importantly, uninfected cells. Much of this apoptosis is mediated by Fas-Fas ligand (FasL) interactions. Previously we demonstrated in macaques that induction of FasL expression and apoptotic cell death of both CD4(+) and CD8(+) T cells by SIV is dependent on a(More)
Assessing the safety of pharmacotherapies is a primary goal of clinical trials in drug development. The low frequency of relevant side effects, however, often poses a significant challenge for risk assessment. Methodologies allowing robust extrapolation of safety statistics based on preclinical data and information from clinical trials with limited numbers(More)
The Nef protein of human and simian immunodeficiency virus (HIV/SIV) is believed to interfere with T cell activation signals by forming a signaling complex at the plasma membrane. Composition and function of the complex are not fully understood. Here we report that Nef recruits the Polycomb Group (PcG) protein Eed, so far known as a nuclear factor and(More)
In the infected host, the Nef protein of HIV/SIV is required for high viral loads and thus disease progression. Recent evidence indicates that Nef enhances replication in the T cell compartment after the virus is transmitted from dendritic cells (DC). The underlying mechanism, however, is not clear. Here, we report that a natural variability in the(More)
The Nef protein of HIV-1 is a key promoter of disease progression, owing to its dramatic yet ill-defined impact on viral replication. Previously, we have shown that Nef enhances Tat-mediated transcription in a manner depending on Lck and the cytoplasmic sequestration of the transcriptional repressor embryonic ectodermal development [corrected]. In this(More)
The Nef protein of HIV-1 is a key promoter of disease progression, owing to its dramatic yet ill-defined impact on viral replication. Previously, we have shown that Nef enhances embryonic ectodermal development Tat-mediated transcription in a manner depending on Lck and the cytoplasmic sequestration of the transcriptional repressor embryonic ectodermal(More)
  • 1