Bernd Joachim Zünkler

Learn More
Sulfonylureas inhibit an ATP-dependent K+ channel in the B-cell plasma membrane and thereby initiate insulin release. Diazoxide opens this channel and inhibits insulin release. In mouse pancreatic islets, we have explored whether other targets for these drugs must be postulated to explain their hypo- or hyperglycaemic properties. At non-saturating drug(More)
The influence of the hypoglycemic drugs tolbutamide, meglitinide, glipizide and glibenclamide on ATP-dependent K+ currents of mouse pancreatic B-cells was studied using the whole-cell configuration of the patch-clamp technique. In the absence of albumin, tolbutamide blocked the currents half maximally at 4.1 μmol/l. In the presence of 2 mg/ml albumin half(More)
In mouse pancreatic islets the kinetics of insulin secretion and O2 uptake in response to the non-metabolizable leucine analogue (+/-)-BCH (2-endo- aminonorbornane -2-carboxylic acid) were compared. In addition, the fuel-mobilizing effect of (+/-)-BCH was studied with a mitochondrial fraction from islets. (1) Within 2 min 20 mM-(+/-)-BCH markedly enhanced(More)
The effects of intracellular purine nucleotides on tolbutamide-induced block of ATP-dependent K+ channels from mouse pancreatic B-cells were studied using the patch-clamp technique. When applied to the inside of excised patches, tolbutamide alone blocked channel activity half-maximally at 55 microM and the concentration-response curve for the inhibition of(More)
The kinetics of insulin secretion and oxygen uptake in response to D-glucose and tolbutamide were compared in mouse pancreatic islets. In addition, the role of decreased ATP as a driving force for secretagogue-induced oxygen consumption was examined. D-glucose (10–30 mmol/1) triggered a biphasic insulin release which always coincided with a monophasic(More)
K+ channels in the membrane of murine pancreatic β-cells were studied using the patch-clamp technique. The delayed outward current was activated in whole-cell experiments by depolarizing voltage pulses to potentials between −30 mV and 0 mV. Forskolin blocked the current rapidly (<5 s) and reversibly with 50% inhibition at 13 μM. The inhibition did not(More)
Cardiotoxicity is among the leading reasons for drug attrition and is therefore a core subject in non-clinical and clinical safety testing of new drugs. European Centre for the Validation of Alternative Methods held in March 2008 a workshop on “Alternative Methods for Drug-induced Cardiotoxicity” in order to promote acceptance of alternative methods(More)
K+ currents through ATP-dependent channels were recorded from inside-out patches of beta-cell membrane as previously described (Rorsman and Trube 1985). Channels were opened by removing ATP from the intracellular side of the membrane. The open probability and/or the number of active channels declined spontaneously ("run-down") when ATP was absent for(More)
Alpha-ketoisocaproate directly inhibits the ATP-sensitive K(+) channel (K(ATP) channel) in pancreatic beta-cells, but it is unknown whether direct K(ATP) channel inhibition contributes to insulin release by alpha-ketoisocaproate and related alpha-keto acid anions, which are generally believed to act via beta-cell metabolism. In membranes from HIT-T15(More)
Torsades de pointes (TdP) arrhythmia is a potentially fatal form of ventricular arrhythmia that occurs under conditions where cardiac repolarization is delayed (as indicated by prolonged QT intervals from electrocardiographic recordings). A likely mechanism for QT interval prolongation and TdP arrhythmias is blockade of the rapid component of the cardiac(More)