Bernd Hackauf

Learn More
The rice genome has proven a valuable resource for comparative approaches to address individual genomic regions in Triticeae species at the molecular level. To exploit this resource for rye genetics and breeding, an inventory was made of EST-derived markers with known genomic positions in rye, which were related with those in rice. As a first inventory set,(More)
Using barley and wheat expressed sequence tags as well as rice genomic sequence and mapping information, we revisited the genomic region encompassing the self-incompatibility (SI) locus Z on rye chromosome 2RL applying a comparative approach. We were able to arrange 12 novel sequence-tagged site (STS) markers around Z, spanning a genetic distance of 32.3(More)
Rye (Secale cereale) is closely related to wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to its large genome (~8 Gb) and its regional importance, genome analysis of rye has lagged behind other cereals. Here, we established a virtual linear gene order model (genome zipper) comprising 22,426 or 72% of the detected set of 31,008 rye genes. This(More)
Genetic diversity of elite breeding material can be increased by introgression of exotic germplasm to ensure long-term selection response. The objective of our study was to develop and characterize the first two rye introgression libraries generated by marker-assisted backcrossing and demonstrate their potential application for improving the baking quality(More)
Genetic analysis of resistance to leaf rust in rye (Puccinia recondita f. sp. secalis) led to the identification of two dominant resistance genes, Pr1 and Pr2. Both genes proved to be effective against a local leaf-rust population as well as a subset of single-pustule isolates (SPIs) the latter of which comprised SPIs with very high virulence complexity.(More)
The gametophytic two-locus self-incompatibility (SI) system in rye was investigated in view of a possible involvement of protein phosphorylation and Ca2+ as constituents of a signal transduction mechanism. Phosphorylation kinetics in pollen grains was found to be significantly different after in vitro treatment of pollen with either “cross” or “self” stigma(More)
We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole-genome shotgun sequencing of the 7.9-Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by(More)
Restoration of male fertility is a prerequisite for hybrid rye breeding and currently the most straightforward approach to minimize ergot infection in hybrid rye varieties. Molecular markers are important tools for the efficient introgression and management of restorer genes like Rfp1 originating from unadapted genetic resources. Furthermore, closely linked(More)
Rye inbred lines segregating at the S-locus and homozygous at the Z-locus were investigated by PCR with primers derived from Brassica SLG-sequences. After denaturing gradient gel electrophoresis (DGGE), a 280 bp PCR-fragment displays a polymorphism perfectly correlated to the underlying S-genotypes. This is the first report on S-related DNA polymorphism in(More)
The rye-derived dwarfing gene Ddw1 on chromosome 5R acts in triticale in considerably reducing plant height, increasing FHB severity and delaying heading stage. Triticale, an amphiploid hybrid between durum wheat and rye, is an European cereal mainly grown in Germany, France, Poland, and Belarus for feeding purposes. Dwarfing genes might further improve the(More)