Bernard Priem

Learn More
When fed to a beta-galactosidase-negative (lacZ(-)) Escherichia coli strain that was grown on an alternative carbon source (such as glycerol), lactose accumulated intracellularly on induction of the lactose permease. We showed that intracellular lactose was efficiently glycosylated when genes of glycosyltransferase that use lactose as acceptor were(More)
The exopolysaccharides (EPS) of two unicellular strains of cyanobacteria Synechocystis PCC 6803 and 6714, formed labile, radial structures, uniformly distributed on the cell surface, and stainable by specific dyes for acidic polysaccharides. The two strains produced EPS at similar rates, which depended, along with the duration of the producing phase, on the(More)
We previously described a bacterial fermentation process for the in vivo conversion of lactose into fucosylated derivatives of lacto-N-neotetraose Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (LNnT). The major product obtained was lacto-N-neofucopentaose-V Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, carrying fucose on the glucosyl residue of(More)
We report here the in vivo production of type 2 fucosylated-N-acetyllactosamine oligosaccharides in Escherichia coli. Lacto-N-neofucopentaose Galβ1-4GlcNAcβ1-3Galβ1-4(Fucα1-3)Glc, lacto-N-neodifucohexaose Galβ1-4(Fucα1-3)Glc-NAcβ1-3Galβ1-4(Fucα1-3)Glc, and lacto-N-neodifucooctaose Galβ1-4GlcNAcβ1-3Galβ1-4(Fucα1-3)GlcNAcβ1-3Galβ1-4(Fucα1-3)Glc were produced(More)
Two metabolically engineered Escherichia coli strains have been constructed to produce the carbohydrate moieties of gangliosides GM2 (GalNAcbeta-4(NeuAcalpha-3)Galbeta-4Glc; Gal = galactose, Glc = glucose, Ac = acetyl) and GM1 (Galbeta-3GalNAcbeta-4(NeuAcalpha-3)Galbeta-4Glc. The GM2 oligosaccharide-producing strain TA02 was devoid of both(More)
Oligosaccharides present on the surface of pathogenic bacteria play an important role in their interaction with their host. Bacteria with altered cell surface structures can be used to study these interactions, and glycoengineering represents a tool to display a glycoepitope on a different bacterium. Here, we present non-pathogenic Escherichia coli and(More)
An extracellular xylanase from a thermophilic anaerobe, Clostridium thermolacticum, was purified 400-fold by ion-exchange chromatography and gel filtration. The purified enzyme had a specific activity of 31,670 nkat/mg of protein at 60 degrees C, a molecular mass of 39 kDa and a pI of 4.9. The enzyme exhibited maximal activity at 80 degrees C (1 h assay)(More)
The synthesis of sufficient amounts of oligosaccharides is the bottleneck for the study of their biological function and their possible use as drug. As an alternative for chemical synthesis, we propose to use Escherichia coli as a "living factory." We have addressed the production of the Galp alpha(1-3)Galp beta(1-4)GlcNAc epitope, the major porcine antigen(More)
The cluster of genes of capsular K5 heparosan is composed of three regions, involved in the synthesis and the exportation of the polysaccharide. The region 2 possesses all the necessary genes involved in the synthesis of heparosan, namely kfiA, encoding alpha-4-N-acetylglucosaminyltransferase, kfiD, encoding β-3-glucuronyl transferase, kfiC, encoding(More)
We have previously reported the large-scale synthesis of neolactotetraose (Galbeta-4GlcNAcbeta-3Galbeta-4Glc) from lactose in engineered Escherichia coli cells (Priem B, Gilbert M, Wakarchuk WW, Heyraud A and Samain E. 2002. A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria.(More)