Bernard Muller

Learn More
BACKGROUND AND OBJECTIVES Because pulmonary circulation is the primary vascular target of inhaled particulate matter (PM), and nitric oxide is a major vasculoprotective agent, in this study we investigated the effect of various particles on the NO-cyclic guanosine monophosphate (cGMP) pathway in pulmonary arteries. METHODS We used intrapulmonary arteries(More)
The purpose of this study was to demonstrate the feasibility of steady-state True fast imaging with steady precession (TrueFISP) four-dimensional imaging of mouse heart at high resolution and its efficiency for cardiac volumetry. Three-dimensional cine-imaging of control and hypoxic mice was carried out at 4.7 T without magnetization preparation or(More)
BACKGROUND Hypoxic states of the cardiovacular system are undoubtedly associated with the most frequent diseases of modern time. Therefore, understanding hypoxic resistance encountered after physiological adaptation such as chronic hypoxia, is crucial to better deal with hypoxic insult. In this study, we examine the role of energetic modifications induced(More)
Acknowledgments This work was partially funded by Agence Nationale de la Recherche (Nanotox). The authors thank Mrs Lacayrerie for excellent animal care. Pascal Andujar was a fellow from Chancellerie de Paris (Legs Poix). All authors declare they have no competing financial interest.
Activation of the β₂-adrenoceptor (β₂-AR) elicits an endothelial nitric oxide synthase (eNOS)-dependent relaxation in mouse pulmonary artery, which, contrary to the muscarinic receptor-dependent relaxation, is preserved in hypoxic pulmonary arterial hypertension. We therefore characterized the signaling pathways underlying the β₂-AR-mediated eNOS(More)
was applied here on perfused hearts to describe the modifications of the regulation of heart energetics induced in mice exposed to a 3-week chronic hypoxia. MoCA combines 31P-NMR spectroscopy and modular (top-down) control analysis to describe the integrative regulation of energy metabolism in intact beating heart, on the basis of two modules(More)
Pulmonary circulation could be one of the primary vascular targets of finest particles that can deeply penetrate into the lungs after inhalation. We investigated the effects of engineered nanoparticles on vasomotor responses of small intrapulmonary arteries using isometric tension measurements. Acute in vitro exposure to carbon nanoparticles (CNP)(More)
Tetrahydrobiopterin (BH4), which fosters the formation of and stabilizes endothelial NO synthase (eNOS) as an active dimer, tightly regulates eNOS coupling / uncoupling. Moreover, studies conducted in genetically-modified models demonstrate that BH4 pulmonary deficiency is a key determinant in the pathogenesis of pulmonary hypertension. The present study(More)
AIM In endothelium-denuded arteries, the nitric oxide (NO) donor S-nitrosoglutathione (GSNO) induced a persistent hypo-reactivity to vasoconstrictors, and low-molecular weight thiols such as N-acetyl cysteine (NAC) produced a relaxant effect. These effects were attributed to the formation of vascular NO stores. In arteries with a functional endothelium,(More)