Learn More
Although numerous methods to register brains of different individuals have been proposed, no work has been done, as far as we know, to evaluate and objectively compare the performances of different nonrigid (or elastic) registration methods on the same database of subjects. In this paper, we propose an evaluation framework, based on global and local(More)
Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method(More)
This paper describes an interactive system for the semantic annotation of brain magnetic resonance images. The system uses both a numerical atlas and symbolic knowledge of brain anatomical structures depicted using the Semantic Web standards. This knowledge is combined with graphical data, automatically extracted from the images by imaging tools. The(More)
Medical image simulation produces virtual images from software representations of imaging devices and virtual object models representing the human body. Object models consist of the geometry of the objects (e.g. organs, tissues, pathological structures, etc.) and of their physical parameters used for the simulation. The diversity of this information makes(More)
OBJECT The authors present the use of cortical sulci, segmented from magnetic resonance (MR) imaging, and functional data from functional (f)MR imaging and magnetoencephalography (MEG) in the image-guided surgical management of lesions adjacent to the sensorimotor cortex. METHODS In an initial set of 11 patients, sulci near lesions were automatically(More)
This paper presents the Virtual Imaging Platform (VIP), a platform accessible at http://vip.creatis.insa-lyon.fr to facilitate the sharing of object models and medical image simulators, and to provide access to distributed computing and storage resources. A complete overview is presented, describing the ontologies designed to share models in a common(More)
Data fusion in medical imaging can be seen into two ways (i) multisensors fusion of anatomical and functional information and (ii) interpatient data fusion by means of warping models. These two aspects set the methodological framework necessary to perform anatomical modelling especially when concerning the modelling of brain structures. The major relevance(More)
This paper deals with the development of computerized brain atlases addressing both research and clinical needs. The authors analyze in detail the potential of these systems and discuss the capabilities and limitations of the digital atlases currently being developed around the world. The authors propose to reconsider the concept of a brain atlas, regarding(More)
The goal of the NeuroBase project is to facilitate collaborative research in neuroimaging through a federated system based on semantic web technologies. The cornerstone and focus of this paper is the design of a common semantic model providing a unified view on all data and tools to be shared. For this purpose, we built a multi-layered and multi-components(More)