Bernard Courtois

Learn More
In this paper, we propose a new scheme for BuiltIn Test (BIT) that uses Multiple-polynomial Linear Feedback Shift Registers (MP-LFSR’s). The same MP-LFSR that generates random patterns to cover easy to test faults is loaded with seeds to generate deterministic vectors for difficult to test faults. The seeds are obtained by solving systems of linear(More)
A rapid method for the determination of the degrees of methylation (DM) and acetylation (DA) of pectins was developed. The polymer substitution degree as determined after saponification at 80 degrees C with NaOD during 1H NMR analysis. Under alkaline conditions, the cleavage of O-acetyl and O-methyl linkages allows the detection and the integration of the(More)
As stable fabrication processes for MicroElectroMechanical Systems (MEMS) emerge, research efforts shift towards the design of systems of increasing complexity. The ways in which testing is going to be performed for large volume complex devices embedding MEMS are not known. As in the microelectronics industry, the development of cost-effective tests for(More)
In this paper we perform a comparative analysis of the encoding efficiency of BIST schemes based on reseeding of single polynomial LFSR's as well as LFSR's with fully programmable polynomials. Full programmability gives much better encoding efficiency. For a testcube with s carebits we need only s+4 bits in contrast to s+19 bits for reseeding of single(More)
A design methodology for on-line testing analog linear fully differential (FD) circuits is presented in this work. The test strategy is based on concurrently monitoring via an analog checker the common mode (CM) at the inputs of all amplifiers. The totally self-checking (TSC) goal is achieved for linear FD implementations provided that the checker CM(More)