Bernard Brezzo

Learn More
Inspired by the brain's structure, we have developed an efficient, scalable, and flexible non-von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256(More)
Efforts to achieve the long-standing dream of realizing scalable learning algorithms for networks of spiking neurons in silicon have been hampered by (a) the limited scalability of analog neuron circuits; (b) the enormous area overhead of learning circuits, which grows with the number of synapses; and (c) the need to implement all inter-neuron communication(More)
The new era of cognitive computing brings forth the grand challenge of developing systems capable of processing massive amounts of noisy multisensory data. This type of intelligent computing poses a set of constraints, including real-time operation, low-power consumption and scalability, which require a radical departure from conventional system design.(More)
Software based tools for simulation are not keeping up with the demands for increased chip and system design complexity. In this paper, we describe a cycle-accurate and cycle-reproducible large-scale FPGA platform that is designed from the ground up to accelerate logic verification of the Bluegene/Q compute node ASIC, a multi-processor SOC implemented in(More)
Drawing on neuroscience, we have developed a parallel, event-driven kernel for neurosynaptic computation, that is efficient with respect to computation, memory, and communication. Building on the previously demonstrated highlyoptimized software expression of the kernel, here, we demonstrate TrueNorth, a co-designed silicon expression of the kernel.(More)
Business growth and technology advancements have resulted in growing amounts of enterprise data. To gain valuable business insight and competitive advantage, businesses demand the capability of performing real-time analytics on such data. This, however, involves expensive query operations that are very time consuming on traditional CPUs. Additionally, in(More)
Loss less compression is often used before writing data to a storage medium or transmitting across a transmission medium. Compression aids by saving storage space or transmission bandwidth, a decompression operation is performed when the data is subsequently read. Though this scheme has clear benefits, the execution time of compression and decompression is(More)
Drawing on neuroscience, we have developed a parallel, event-driven kernel for neurosynaptic computation, that is efficient with respect to computation, memory, and communication. Building on the previously demonstrated highly-optimized software expression of the kernel, here, we demonstrate TrueNorth, a co-designed silicon expression of the kernel.(More)
Complex analytics queries often involve expensive operations that may require large computational runtimes leading to slow query responsiveness and hampering real-time performance. Moreover, running these expensive analytics queries inside traditional online transaction processing (OLTP) systems for real-time analytics can affect the performance of(More)