Berkley J. Walker

Learn More
Biochemical models are used to predict and understand the response of photosynthesis to rising temperatures and CO2 partial pressures. These models require the temperature dependency of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics and mesophyll conductance to CO2 (g(m)). However, it is not known how the temperature response of Rubisco(More)
The CO2 compensation point in the absence of day respiration (Γ*) is a key parameter for modelling leaf CO2 exchange. Γ* links the kinetics of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) with the stoichiometry of CO2 released per Rubisco oxygenation from photorespiration (α), two essential components of biochemical models of photosynthesis.(More)
Photosynthesis captures light energy to produce ATP and NADPH. These molecules are consumed in the conversion of CO2 to sugar, photorespiration, and NO3(-) assimilation. The production and consumption of ATP and NADPH must be balanced to prevent photoinhibition or photodamage. This balancing may occur via cyclic electron flow around photosystem I (CEF),(More)
Rubisco activase (RCA) is essential for the activation of Rubisco, the carboxylating enzyme of photosynthesis. In Arabidopsis, RCA is composed of a large RCAα and small RCAβ isoform that are formed by alternative splicing of a single gene (At2g39730). The activity of Rubisco is controlled in response to changes in irradiance by regulation of RCA activity,(More)
Photorespiration recycles fixed carbon following the oxygenation reaction of Ribulose, 1–5, carboxylase oxygenase (Rubisco). The recycling of photorespiratory C2 to C3 intermediates is not perfectly efficient and reduces photosynthesis in C3 plants. Recently, a plastidic glycolate/glycerate transporter (PLGG1) in photorespiration was identified in(More)
Photorespiration is essential for C3 plants but operates at the massive expense of fixed carbon dioxide and energy. Photorespiration is initiated when the initial enzyme of photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), reacts with oxygen instead of carbon dioxide and produces a toxic compound that is then recycled by(More)
Biochemical models of leaf photosynthesis, which are essential for understanding the impact of photosynthesis to changing environments, depend on accurate parameterizations. One such parameter, the photorespiratory CO2 compensation point can be measured from the intersection of several CO2 response curves measured under sub-saturating illumination. However,(More)
Recycling of carbon by the photorespiratory pathway involves enzymatic steps in the chloroplast, mitochondria, and peroxisomes. Most of these reactions are essential for plants growing under ambient CO2 concentrations. However, some disruptions of photorespiratory metabolism cause subtle phenotypes in plants grown in air. For example, Arabidopsis thaliana(More)
There is a growing interest in accurate and comparable measurements of the CO2 photocompensation point (Γ*), a vital parameter to model leaf photosynthesis. The Γ* is measured as the common intersection of several CO2 response curves, but this method may incorrectly estimate Γ* by using linear fits to extrapolate curvilinear responses and single(More)
Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory energy or carbon loss have been proposed, based either on screening for natural variation or by means(More)