Learn More
Auditory fear memory is thought to be maintained by fear conditioning-induced potentiation of synaptic efficacy, which involves enhanced expression of surface AMPA receptor (AMPAR) at excitatory synapses in the lateral amygdala (LA). Depotentiation, reversal of conditioning-induced potentiation, has been proposed as a cellular mechanism for fear extinction;(More)
The metabotropic glutamate receptor subtype 1 (mGluR1) is thought to be crucial for several forms of memory, but its role in memory extinction has not been determined. Here, we examined a role of mGluR1 in the extinction of conditioned fear using microinjection of an mGluR1 antagonist, CPCCOEt, into the lateral amygdala (LA), a critical structure for fear(More)
It is believed that memory reactivation transiently renders consolidated memory labile and that this labile or deconsolidated memory is reconsolidated in a protein synthesis-dependent manner. The synaptic correlate of memory deconsolidation upon reactivation, however, has not been fully characterized. Here, we show that 3,5-dihydroxyphenylglycine (DHPG), an(More)
The amygdala is known to be a critical storage site of conditioned fear memory. Among the two major pathways to the lateral amygdala (LA), the cortical pathway is known to display a presynaptic long-term potentiation which is occluded with fear conditioning. Here we show that fear extinction results in a net depression of conditioning-induced potentiation(More)
It is generally believed that after memory consolidation, memory-encoding synaptic circuits are persistently modified and become less plastic. This, however, may hinder the remaining capacity of information storage in a given neural circuit. Here we consider the hypothesis that memory-encoding synaptic circuits still retain reversible plasticity even after(More)
Fear renewal, a widely pursued model of post-traumatic stress disorder and phobias, refers to the context-specific relapse of conditioned fear after extinction. However, its molecular mechanisms are largely unknown. We found that renewal-inducing stimuli, generally believed to be insufficient to induce synaptic plasticity, enhanced excitatory synaptic(More)
Auditory fear conditioning is a well-characterized rodent learning model where a neutral auditory cue is paired with an aversive outcome to induce associative fear memory. The storage of long-term auditory fear memory requires long-term potentiation (LTP) in the lateral amygdala and de novo protein synthesis. Although many studies focused on individual(More)
Among the most promising approaches for treating Alzheimer's disease is immunotherapy with amyloid-β (Aβ)-targeting antibodies. Using in vivo two-photon imaging in mouse models, we found that two different antibodies to Aβ used for treatment were ineffective at repairing neuronal dysfunction and caused an increase in cortical hyperactivity. This unexpected(More)
Late-phase long-term potentiation (L-LTP) of excitatory synaptic transmission at thalamic input synapses onto the lateral amygdala (T-LA synapses) has been proposed as a cellular substrate for long-term fear memory. This notion is evidenced primarily by previous reports in which the same pharmacological treatments block both T-LA L-LTP and the consolidation(More)
Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when(More)