Learn More
The performance of high-speed digital fiber-optic transmission using subcarrier multiplexing (SCM) is investigated both analytically and numerically. In order to reduce the impact of fiber chromatic dispersion and increase bandwidth efficiency, optical single-sideband (OSSB) modulation was used. Because frequency spacing between adjacent subcarriers can be(More)
We design and fabricate a novel multicore fiber (MCF), with seven cores arranged in a hexagonal array. The fiber properties of MCF including low crosstalk, attenuation and splice loss are described. A new tapered MCF connector (TMC), showing ultra-low crosstalk and losses, is also designed and fabricated for coupling the individual signals in-and-out of the(More)
We describe a new multicore fiber (MCF) having seven single-mode cores arranged in a hexagonal array, exhibiting low crosstalk among the cores and low loss across the C and L bands. We experimentally demonstrate a record transmission capacity of 112 Tb/s over a 76.8-km MCF using space-division multiplexing and dense wavelength-division multiplexing (DWDM).(More)
We discuss the advantages of spatial superchannels for future terabit networks based on space division multiplexing (SDM), and demonstrate reception of spatial superchannels by a coherent receiver utilizing joint digital signal processing (DSP). In a spatial superchannel, the SDM modes at a given wavelength are routed together, allowing simplified design of(More)
Using multimode fibers for long-haul transmission is proposed and demonstrated experimentally. In particular few-mode fibers (FMFs) are demonstrated as a good compromise since they are sufficiently resistant to mode coupling compared to standard multimode fibers but they still can have large core diameters compared to single-mode fibers. As a result these(More)
This paper describe a truly-passive coexistence of 10G-PON and GPON compatible reach extension system with a novel optical configuration, by using laser pumps to provide reverse-pumped distributed Raman gain for both 1270 nm 10G-PON and 1310 nm GPON upstream (US) signals, and using semiconductor optical amplifiers (SOA) as boosters to improve the loss(More)
We demonstrate a seven-core erbium-doped fiber amplifier in which all the cores were pumped simultaneously by a side-coupled tapered multimode fiber. The amplifier has multicore (MC) MC inputs and MC outputs, which can be readily spliced to MC transmission fiber for amplifying space division multiplexed signals. Gain over 25 dB was obtained in each of the(More)
Soils are globally significant sources and sinks of atmospheric CO2. Increasing the resolution of soil carbon turnover estimates is important for predicting the response of soil carbon cycling to environmental change. We show that soil carbon turnover times can be more finely resolved using a dual isotope label like the one provided by elevated CO2(More)
An adaptive polarization-mode dispersion (PMD) compensation system has been developed to cancel the effects of first-order PMD by producing a complementary PMD vector in the receiver. Control parameters for the PMD compensation system comprised of a polarization controller and a PMD emulator are derived from the nonreturn-to-zero (NRZ) signal in the channel(More)
A statistical theory for crosstalk in multicore fibers is derived from coupled-mode equations including bend-induced perturbations. Bends are shown to play a crucial role in crosstalk, explaining large disagreement between experiments and previous calculations. The average crosstalk of a fiber segment is related to the statistics of the bend radius and(More)