Benu Brata Das

Learn More
Small-molecule inhibitors of PARP are thought to mediate their antitumor effects as catalytic inhibitors that block repair of DNA single-strand breaks (SSB). However, the mechanism of action of PARP inhibitors with regard to their effects in cancer cells is not fully understood. In this study, we show that PARP inhibitors trap the PARP1 and PARP2 enzymes at(More)
AbstractThe parasites of the order kinetoplastidae including Leishmania spp. emerge from most ancient phylogenic branches of unicellular eukaryotic lineages. In their life cycle, topoisomerase I plays a significant role in carrying out vital cellular processes. Camptothecin (CPT), an inhibitor of DNA topoisomerase I, induces programmed cell death (PCD) both(More)
Protein kinase C (PKC) is an important constituent of the signaling pathways involved in apoptosis. We report here that like staurosporine, withaferin A is a potent inhibitor of PKC. In Leishmania donovani, the inhibition of PKC by withaferin A causes depolarization of ΔΨm and generates ROS inside cells. Loss of ΔΨm leads to the release of cytochrome c into(More)
Human tyrosyl-DNA phosphodiesterase (TDP1) hydrolyzes the phosphodiester bond at a DNA 3' end linked to a tyrosyl moiety. This type of linkage is found at stalled topoisomerase I (Top1)-DNA covalent complexes, and TDP1 has been implicated in the repair of such complexes. Here we show that Top1-associated DNA double-stranded breaks (DSBs) induce the(More)
Leishmania, a unicellular trypanosomatid protozoan parasite, causes a wide range of human diseases ranging from the localized self-healing cutaneous lesions to fatal visceral leishmaniasis. However, it undergoes a process of programmed cell death during treatment with the topoisomerase I poison camptothecin (CPT). The present study shows that CPT-induced(More)
In the post-genomic perspective, the quest of programmed cell death (PCD) mechanisms in kinetoplastid parasites lies in the identification and characterization of cell death executer proteins. Here, we show that baicalein (BLN), a potent topoisomerase IB inhibitor, generates an oxidative stress in the parasites leading to altered physiological and(More)
Human tyrosyl-DNA phosphodiesterase (TDP1) hydrolyzes the phosphodiester bond at a DNA 3'-end linked to a tyrosyl moiety and has been implicated in the repair of topoisomerase I (Top1)-DNA covalent complexes. TDP1 can also hydrolyze other 3'-end DNA alterations including 3'-phosphoglycolate and 3'-abasic sites, and exhibits 3'-nucleosidase activity(More)
Mitochondria are the principal site for the generation of cellular ATP by oxidative phosphorylation. F0F1-ATP synthase, a complex V of the electron transport chain, is an important constituent of mitochondria-dependent signaling pathways involved in apoptosis. In the present study, we have shown for the first time that 3,3'-diindolylmethane (DIM), a DNA(More)
Ataxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA damage response (DDR). As neurons have high rates of transcription that require topoisomerase I (TOP1), we investigated whether TOP1 cleavage complexes (TOP1cc)-which are potent transcription-blocking lesions-also produce(More)