Learn More
Responses to frequency modulated (FM) sweeps were recorded in rat primary auditory cortex. Forty-four percent of the cells were direction-selective. For speed selectivity, the majority of the cells preferred faster sweeps. The results suggest that rat auditory cortex may be used for processing communication signals of their predators or for detecting(More)
In bulk materials, defects are usually considered to be unwanted since deviations from perfect lattices may degrade device performance. Interestingly, the presence of defects throws open new possibilities in the case of nanostructures due to the properties related to their limited size scale. Defects and disorders which alter the electronic structure of(More)
The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin(More)
Single-walled carbon nanotubes (SWCNTs) exhibit excellent nonlinear optical (NLO) properties due to the delocalized π electron states present along their tube axis. Using the open aperture Z-scan method in tandem with X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, we demonstrate the simultaneous tailoring of both electronic and NLO(More)
The Fourier transform Raman and Fourier transform infrared spectra of p-bromophenoxyacetic acid were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by HF and DFT (B3LYP) method with the 6-31G(d,p) basis set. The scaled theoretical wavenumbers(More)
The FTIR and FT-Raman spectra of 2,4-dichloro-6-nitrophenol (2,4-DC6NP) has been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of (2,4-DC6NP) were obtained by the ab initio and DFT levels of theory with complete relaxation in the potential energy surface(More)
The FT-IR and FT-Raman spectra of 2,3-difluoro phenol (2,3-DFP) has been recorded in the region 4000-400 and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,3-DFP were obtained by the ab initio HF and density functional theory (DFT) levels of theory with complete relaxation in the potential energy(More)
The Fourier transform Raman and Fourier transform infrared spectra of 2-amino-5-iodopyridine were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by HF and DFT (B3LYP) methods with the 6-31G(d,p) basis set for C, N, H and LANL2DZ pseudopotential for(More)
The FTIR and FT-Raman spectra of 2-amino-5-chloropyridine (ACP) has been recorded in the region 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of ACP were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface(More)
Integration of colloidal nanocrystal quantum dots (NQDs) with strongly absorbing semiconductors offers the possibility of developing optoelectronic and photonic devices with new functionalities. We examine the process of energy transfer (ET) from photoactive CdSe/ZnS core/shell NQDs into lead-halide perovskite polycrystalline films as a function of distance(More)