Learn More
Diffusion-weighted imaging (DWI) enables non-invasive investigation and characterization of the white matter but suffers from a relatively poor spatial resolution. Increasing the spatial resolution in DWI is challenging with a single-shot EPI acquisition due to the decreased signal-to-noise ratio and T2(∗) relaxation effect amplified with increased echo(More)
The characterization of the complex diffusion signal arising from the brain remains an open problem. Many representations focus on characterizing the global shape of the diffusion profile at each voxel and are limited to the assessment of connectivity. In contrast, Multiple Fascicle Models (MFM) seek to represent the contribution from each white matter(More)
Diffusion weighted imaging (DWI) is sensitive to alterations in the diffusion of water molecules caused by microstructural barriers. Different microstructural compartments are characterized by differences in DWI signal. Diffusion tensor imaging conflates the signal from these compartments into a single tensor, which poorly represents multiple white matter(More)
RATIONALE AND OBJECTIVES Tuberous sclerosis complex (TSC) is a genetic neurocutaneous syndrome in which cognitive and social-behavioral outcomes for patients vary widely in an unpredictable manner. The cause of adverse neurologic outcome remains unclear. The aim of this study was to investigate the hypothesis that disordered white matter and abnormal neural(More)
Accurate tissue and structure segmentation of magnetic resonance (MR) brain scans is critical in several applications. In most approaches this task is handled through two sequential steps. We propose to carry out cooperatively both tissue and subcortical structure segmentation by distributing a set of local and cooperative Markov random field (MRF) models(More)
PURPOSE To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. METHODS The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency,(More)
The purpose of this study was to examine the relationship between language pathways and autism spectrum disorders (ASDs) in patients with tuberous sclerosis complex (TSC). An advanced diffusion-weighted magnetic resonance imaging (MRI) was performed on 42 patients with TSC and 42 age-matched controls. Using a validated automatic method, white matter(More)
In this article, the authors aim to introduce the nonradiologist to diffusion tensor imaging (DTI) and its applications to both clinical and research aspects of tuberous sclerosis complex. Tuberous sclerosis complex is a genetic neurocutaneous syndrome with variable and unpredictable neurological comorbidity that includes refractory epilepsy, intellectual(More)
Diffusion tensor imaging (DTI) is unable to represent the diffusion signal arising from multiple crossing fascicles and freely diffusing water molecules. Generative models of the diffusion signal, such as multi-fascicle models, overcome this limitation by providing a parametric representation for the signal contribution of each population of water(More)
Diffusion-weighted imaging (DWI) enables non-invasive investigation and characterization of the white-matter but suffers from a relatively poor resolution. In this work we propose a super-resolution reconstruction (SRR) technique based on the acquisition of multiple anisotropic orthogonal DWI scans. We address the problem of patient motions by aligning the(More)