Learn More
The prospect of using cell replacement therapies has raised the key issue of whether elucidation of developmental pathways can facilitate the generation of therapeutically important cell types from stem cells. Here we show that the homeodomain proteins Lmx1a and Msx1 function as determinants of midbrain dopamine neurons, cells that degenerate in patients(More)
Regeneration of appendages is frequent among invertebrates as well as some vertebrates. However, in mammals this has been largely relegated to digit tip regeneration, as found in mice and humans. The regenerated structures are formed from a mound of undifferentiated cells called a blastema, found just below the site of amputation. The blastema ultimately(More)
Msx and Dlx homeoproteins control the morphogenesis and organization of craniofacial skeletal structures, specifically those derived from the pharyngeal arches. In vitro Msx and Dlx proteins have opposing transcriptional properties and form heterodimeric complexes via their homeodomain with reciprocal functional repression. In this report we examine the(More)
We have generated a null allele of the mouse Msx1 homeobox gene by insertion of an nlacZ reporter gene into its homeobox. The sensitivity of beta-galactosidase detection permitted us to reveal novel aspects of Msx1 gene expression in heterozygous embryos, in particular in ectoderm and mesoderm during gastrulation, and in migrating neural crest cells.(More)
Msx1 and Msx2 encode homeodomain transcription factors that play a role in several embryonic developmental processes. Previously, we have shown that in the adult mouse, Msx1(lacZ) is expressed in vascular smooth muscle cells (VSMCs) and pericytes, and that Msx2(lacZ) is also expressed in VSMCs as well as in a few endothelial cells (ECs). The mouse retina(More)
The dorsal midline of the neural tube has recently emerged as a major signaling center for dorsoventral patterning. Msx genes are expressed at the dorsal midline, although their function at this site remains unknown. Using Msx1(nlacZ) mutant mice, we show that the normal expression domain of Msx1 is interrupted in the pretectum of mutant embryos.(More)
Gonadotropin-releasing hormone (GnRH) is the central regulator of the hypothalamic-pituitary-gonadal axis, controlling sexual maturation and fertility in diverse species from fish to humans. GnRH gene expression is limited to a discrete population of neurons that migrate through the nasal region into the hypothalamus during embryonic development. The GnRH(More)
We have analyzed the expression of the Msx1 gene in the developing mouse brain and examined the brain phenotype in homozygotes. Msx1 is expressed in every cerebral vesicle throughout development, particularly in neuroepithelia, such as those of the fimbria and the medulla. Timing analysis suggests that Msx1(nLacZ) cells delaminate and migrate radially from(More)
The large spectrum of limb morphologies reflects the wide evolutionary diversification of the basic pentadactyl pattern in tetrapods. In even-toed ungulates (artiodactyls, including cattle), limbs are adapted for running as a consequence of progressive reduction of their distal skeleton to symmetrical and elongated middle digits with hoofed phalanges. Here(More)
The homeobox-containing genes Msx1 and Msx2 are highly expressed in the limb field from the earliest stages of limb formation and, subsequently, in both the apical ectodermal ridge and underlying mesenchyme. However, mice homozygous for a null mutation in either Msx1 or Msx2 do not display abnormalities in limb development. By contrast, Msx1; Msx2 double(More)