Benoît Furet

Learn More
The paper focuses on the calibration of elastostatic parameters of spatial anthropomorphic robots. It proposes a new strategy for optimal selection of the measurement configurations that essentially increases the efficiency of robot calibration. This strategy is based on the concept of the robot test-pose and ensures the best compliance error compensation(More)
Tool Condition Monitoring (TCM) systems can improve productivity and ensure workpiece quality, yet, there is a lack of reliable TCM solutions for complex and flexible industrial manufacturing. TCM methods which include the characteristics of the cut seem to be particularly suitable for these demanding applications. In the first section of this paper, three(More)
The paper deals with the problem of compliance errors compensation in robotic-based milling. Contrary to previous works that assume that the forces/torques generated by the manufacturing process are constant, the interaction between the milling tool and the workpiece is modeled in details. It takes into account the tool geometry, the number of teeth, the(More)
The paper focuses on the stiffness modeling of heavy industrial robots with gravity compensators. The main attention is paid to the identification of geometrical and elastostatic parameters and calibration accuracy. To reduce impact of the measurement errors, the set of manipulator configurations for calibration experiments is optimized with respect to the(More)
The paper presents the compliance errors compensation technique for industrial robots, which are used in milling manufacturing cells. under external loading, which is based on the non-linear stiffness model. In contrast to previous works, it takes into account the interaction between the milling tool and the workpiece that depends on the end-effector(More)
The paper presents a new complete approach for Tool Condition Monitoring (TCM) in milling. The aim is the early detection of small damages so that catastrophic tool failures are prevented. A versatile in-process monitoring system is introduced for reliability concerns. The tool condition is determined by estimates of the radial eccentricity of the teeth. An(More)
The paper focuses on the robust identification of geometrical and elastostatic parameters of robotic manipulator. The main attention is paid to the efficiency improvement of the identification algorithm. To increase the identification accuracy, it is proposed to apply the weighted least square technique that employs a new algorithm for assigning of the(More)
Roboticists are faced with new challenges in robotic-based manufacturing. Up to now manufacturing operations that require both high stiffness and accuracy have been mainly realized with computer numerical control machine tools. This paper aims to show that manufacturing finishing tasks can be performed with robotic cells knowing the process cutting(More)
The paper is devoted to the elastostatic calibration of industrial robots, which are used for precise machining of large-dimensional parts made of composite materials. In this technological process, the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot(More)