Benoît Furet

Learn More
The paper is devoted to the elastostatic calibration of industrial robots, which are used for precise machining of large-dimensional parts made of composite materials. In this technological process, the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot(More)
The paper focuses on the calibration of elastostatic parameters of spatial anthropomorphic robots. It proposes a new strategy for optimal selection of the measurement configurations that essentially increases the efficiency of robot calibration. This strategy is based on the concept of the robot test-pose and ensures the best compliance error compensation(More)
The paper deals with the problem of compliance errors compensation in robotic-based milling. Contrary to previous works that assume that the forces/torques generated by the manufacturing process are constant, the interaction between the milling tool and the workpiece is modeled in details. It takes into account the tool geometry, the number of teeth, the(More)
— The paper focuses on the stiffness modeling of heavy industrial robots with gravity compensators. The main attention is paid to the identification of geometrical and elas-tostatic parameters and calibration accuracy. To reduce impact of the measurement errors, the set of manipulator configurations for calibration experiments is optimized with respect to(More)
The paper focuses on the robust identification of geometrical and elastostatic parameters of robotic manipulator. The main attention is paid to the efficiency improvement of the identification algorithm. To increase the identification accuracy, it is proposed to apply the weighted least square technique that employs a new algorithm for assigning of the(More)
The paper presents the compliance errors compensation technique for industrial robots, which are used in milling manufacturing cells. under external loading, which is based on the non-linear stiffness model. In contrast to previous works, it takes into account the interaction between the milling tool and the workpiece that depends on the end-effector(More)
The paper addresses a problem of robotic manipulator calibration. The main contributions are in the area of the elastostatic parameters identification. In contrast to other works, the considered approach takes into account elastic properties of both links and joint. Particular attention is paid to generation of the complete and irreducible stiffness model(More)
The paper is devoted to the accuracy improvement of robot-based milling by using an enhanced manipulator model that takes into account both geometric and elastostatic factors. Particular attention is paid to the model parameters identification accuracy. In contrast to other works, the proposed approach takes into account impact of the gravity compensator(More)