Learn More
Just as reference genome sequences revolutionized human genetics, reference maps of interactome networks will be critical to fully understand genotype-phenotype relationships. Here, we describe a systematic map of ?14,000 high-quality human binary protein-protein interactions. At equal quality, this map is ?30% larger than what is available from small-scale(More)
Novel protein-coding genes can arise either through re-organization of pre-existing genes or de novo. Processes involving re-organization of pre-existing genes, notably after gene duplication, have been extensively described. In contrast, de novo gene birth remains poorly understood, mainly because translation of sequences devoid of genes, or 'non-genic'(More)
A simple method for predicting residues involved in protein interaction sites is proposed. In the absence of any structural report, the procedure identifies linear stretches of sequences as "receptor-binding domains" (RBDs) by analysing hydrophobicity distribution. The sequences of two databases of non-homologous interaction sites eliciting various(More)
Cellular functions are mediated through complex systems of macromolecules and metabolites linked through biochemical and physical interactions, represented in interactome models as 'nodes' and 'edges', respectively. Better understanding of genotype-to-phenotype relationships in human disease will require modeling of how disease-causing mutations affect(More)
In a data set of 593 nonhomologous proteins from the PDB, we have analyzed the pairing of phenylalanine, tyrosine, tryptophan, and histidine residues with their closest aromatic partner. The frequency distribution of the shortest interatomic distance of partners is bimodal with a sharp peak at approximately 3.8 A and a wider one at a longer distance. Only(More)
How disease-associated mutations impair protein activities in the context of biological networks remains mostly undetermined. Although a few renowned alleles are well characterized, functional information is missing for over 100,000 disease-associated variants. Here we functionally profile several thousand missense mutations across a spectrum of Mendelian(More)
Tilted peptides are short sequence fragments (10-20 residues long) that possess an asymmetric hydrophobicity gradient along their sequence when they are helical. Due to this gradient, they adopt a tilted orientation towards a single lipid/water interface and destabilize the lipids. We have detected those peptides in many different proteins with various(More)
In addition to providing lipid chains for protein prenylation, short-chain isoprenyl diphosphate synthases (scIPPSs) play a pivotal role in the biosynthesis of numerous mevalonate pathway end-products, including insect juvenile hormone and terpenoid pheromones. For this reason, they are being considered as targets for pesticide development. Recently, we(More)
The hepatitis C virus (HCV) glycoproteins E1 and E2 should be anchored in the viral membrane by their C-terminal domains. During synthesis, they are translocated to the endoplasmic reticulum (ER) lumen where they remain. The 31 C-terminal residues of the E1 protein and the 29 C-terminal residues of the E2 protein are implicated in the ER retention.(More)
In this study, we describe an in silico method to design peptides that can be made of non-natural amino acids and elicit specific membrane-interacting properties. The originality of the method holds in the capacities developed to design peptides from any non-natural amino acids as easily as from natural ones, and to test the structure stability by an(More)