Benoît Charloteaux

Learn More
Novel protein-coding genes can arise either through re-organization of pre-existing genes or de novo. Processes involving re-organization of pre-existing genes, notably after gene duplication, have been extensively described. In contrast, de novo gene birth remains poorly understood, mainly because translation of sequences devoid of genes, or 'non-genic'(More)
Cellular functions are mediated through complex systems of macromolecules and metabolites linked through biochemical and physical interactions, represented in interactome models as 'nodes' and 'edges', respectively. Better understanding of genotype-to-phenotype relationships in human disease will require modeling of how disease-causing mutations affect(More)
Just as reference genome sequences revolutionized human genetics, reference maps of interactome networks will be critical to fully understand genotype-phenotype relationships. Here, we describe a systematic map of ?14,000 high-quality human binary protein-protein interactions. At equal quality, this map is ?30% larger than what is available from small-scale(More)
A simple method for predicting residues involved in protein interaction sites is proposed. In the absence of any structural report, the procedure identifies linear stretches of sequences as "receptor-binding domains" (RBDs) by analysing hydrophobicity distribution. The sequences of two databases of non-homologous interaction sites eliciting various(More)
Tilted peptides are short sequence fragments (10-20 residues long) that possess an asymmetric hydrophobicity gradient along their sequence when they are helical. Due to this gradient, they adopt a tilted orientation towards a single lipid/water interface and destabilize the lipids. We have detected those peptides in many different proteins with various(More)
How disease-associated mutations impair protein activities in the context of biological networks remains mostly undetermined. Although a few renowned alleles are well characterized, functional information is missing for over 100,000 disease-associated variants. Here we functionally profile several thousand missense mutations across a spectrum of Mendelian(More)
We analyzed structural features of 11,038 direct atomic contacts (either electrostatic, H-bonds, hydrophobic, or other van der Waals interactions) extracted from 139 protein-DNA and 49 protein-RNA nonhomologous complexes from the Protein Data Bank (PDB). Globally, H-bonds are the most frequent interactions (approximately 50%), followed by van der Waals,(More)
BACKGROUND Ticks are blood feeding arachnids that characteristically take a long blood meal. They must therefore counteract host defence mechanisms such as hemostasis, inflammation and the immune response. This is achieved by expressing batteries of salivary proteins coded by multigene families. METHODOLOGY/PRINCIPAL FINDINGS We report the in-depth(More)
HIV gp41(24-157) unfolds cooperatively over the pH range of 1.0-4.0 with T(m) values of > 100 degrees C. At pH 2.8, protein unfolding was 80% reversible and the DeltaH(vH)/DeltaH(cal) ratio of 3.7 is indicative of gp41 being trimeric. No evidence for a monomer-trimer equilibrium in the concentration range of 0.3-36 micro m was obtained by DSC and tryptophan(More)
Genes and gene products do not function in isolation but within highly interconnected 'interactome' networks, modeled as graphs of nodes and edges representing macromolecules and interactions between them, respectively. We propose to investigate genotype-phenotype associations by methodical use of alleles that lack single interactions, while retaining all(More)