Benoît Chachuat

Learn More
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract. Theory and implementation for the global optimization of a wide(More)
This paper presents a decomposition approach for a quite general class of mixed-integer dynamic optimization problems that is capable of guaranteeing a global solution despite the nonconvexities inherent to the dynamic optimization subproblems. A case study is presented in connection to the optimal design and operation of a batch process consisting of a(More)
In this paper we propose a methodology to determine the structure of the pseudo-stoichiometric coefficient matrix K in a mass balance based model, i.e. the maximal number of biomasses that must be taken into account to reproduce an available data set. It consists in estimating the number of reactions that must be taken into account to represent the main(More)
The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new(More)
This paper presents a branch-and-lift algorithm for solving optimal control problems with smooth nonlinear dynamics and potentially nonconvex objective and constraint functionals to guaranteed global optimality. This algorithm features a direct sequential method and builds upon a generic, spatial branch-and-bound algorithm. A new operation, called lifting,(More)