Benno P. Schoenborn

Learn More
Although hydrogens comprise half of the atoms in a protein molecule and are of great importance chemically and structurally, direct visualization of them by using crystallography is difficult. Neutron crystallography is capable of directly revealing the position of hydrogens, but its use on unlabeled samples faces certain technical difficulties: the large(More)
The relative positions of the centers of mass of the 21 proteins of the 30S ribosomal subunit from Escherichia coli have been determined by triangulation using neutron scattering data. The resulting map of the quaternary structure of the small ribosomal subunit is presented, and comparisons are made with structural data from other sources.
As the first International Tables volume devoted to the crystallography of large biological molecules, Volume F is intended to complement existing volumes of International Tables for Crystallography. A background history of the subject is followed by a concise introduction to the basic theory of X-ray diffraction and other requirements for the practice of(More)
Lamellar neutron diffraction from oriented multilayers of hydrated dipalmitoyl lecithin was phased by isomorphous H(2)O-D(2)O exchange and swelling techniques. Bound water sites were located in the polar head group region of the bilayer profile. A 6-A resolution structure based on the neutron scattering density profile is proposed for the bilayer. It is(More)
Water in close proximity to the protein surface is fundamental to protein folding, stability, recognition and activity. Protein structures studied by diffraction methods show ordered water molecules around some charged, polar, and non-polar (hydrophobic) amino acids, although the later are only observed when they are at the interface between symmetry(More)