Bennett L. Ibey

Learn More
In this study, we determined the LD(50) (50% lethal dose) for cell death, and the ED(50) (50% of cell population staining positive) for propidium (Pr) iodide uptake, and phosphatidylserine (PS) externalization for several commonly studied cell lines (HeLa, Jurkat, U937, CHO-K1, and GH3) exposed to 10-ns electric pulses (EP). We found that the LD(50) varied(More)
Terahertz spectrometers and imaging systems are currently being evaluated as biomedical tools for skin burn assessment. These systems show promise, but due to their size and weight, they have restricted portability, and are impractical for military and battlefield settings where space is limited. In this study, we developed and tested the performance of a(More)
Nanoelectroporation of biomembranes is an effect of high-voltage, nanosecond-duration electric pulses (nsEP). It occurs both in the plasma membrane and inside the cell, and nanoporated membranes are distinguished by ion-selective and potential-sensitive permeability. Here we report a novel phenomenon of bioeffects cancellation that puts nsEP cardinally(More)
A wavelet-based signal processing technique was employed to improve an implantable blood perfusion monitoring system. Data was acquired from both in vitro and in vivo sources: a perfusion model and the proximal jejunum of an adult pig. Results showed that wavelet analysis could isolate perfusion signals from raw, periodic, in vitro data as well as fast(More)
Exposure of cells to nanosecond pulsed electric fields (nsPEF) causes a rapid increase in intracellular calcium. The mechanism(s) responsible for this calcium burst remains unknown, but is hypothesized to be from direct influx through nanopores, the activation of specific ion channels, or direct disruption of organelles. It is likely, however, that several(More)
The sensing of analytes in cell culture media without the introduction of exogenous reagents proves difficult in today's cell culturing systems. In this paper, a completely embeddable microarray sensor that has been developed along with a compact fluorescent imaging system to sense oxygen and pH non-invasively is described. The compact detection system(More)
Poly(ethylene glycol) (PEG) hydrogels have been used to encapsulate fluorescently labeled molecules in order to detect a variety of analytes. The hydrogels are designed with a mesh size that will retain the sensing elements while allowing for efficient diffusion of small analytes. Some sensing assays, however, require a conformational change or binding of(More)
In this publication, we demonstrate that exposure of Jurkat and U937 cells to nanosecond pulsed electrical fields (nsPEF) can modulate the extrinsic-mediated apoptotic pathway via the Fas/CD95 death receptor. An inherent difference in survival between these two cell lines in response to 10 ns exposures has been previously reported (Jurkat being more(More)
The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a(More)
High-amplitude, MV/m, nanosecond pulsed electric fields (nsPEF) have been hypothesized to cause nanoporation of the plasma membrane. Phosphatidylserine (PS) externalization has been observed on the outer leaflet of the membrane shortly after nsPEF exposure, suggesting local structural changes in the membrane. In this study, we utilized fluorescently-tagged(More)