Benjamin Volkmer

Learn More
Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or cellular copy numbers, the total cell volume and number of cells in a sample need to be known. Unfortunately, even for the(More)
Fluctuations in intracellular molecule abundance can lead to distinct, coexisting phenotypes in isogenic populations. Although metabolism continuously adapts to unpredictable environmental changes, and although bistability was found in certain substrate-uptake pathways, central carbon metabolism is thought to operate deterministically. Here, we combine(More)
Measuring precise concentrations of proteins can provide insights into biological processes. Here we use efficient protein extraction and sample fractionation, as well as state-of-the-art quantitative mass spectrometry techniques to generate a comprehensive, condition-dependent protein-abundance map for Escherichia coli. We measure cellular protein(More)
Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long(More)
Mutations in myotubularin-related protein-2 (MTMR2) or MTMR13/set-binding factor-2 (SBF2) genes are responsible for the severe autosomal recessive hereditary neuropathies, Charcot-Marie-Tooth disease (CMT) types 4B1 and 4B2, both characterized by reduced nerve conduction velocities, focally folded myelin sheaths and demyelination. MTMRs form a large family(More)
Regulation of metabolic operation in response to extracellular cues is crucial for cells' survival. Next to the canonical nutrient sensors, which measure the concentration of nutrients, recently intracellular "metabolic flux" was proposed as a novel impetus for metabolic regulation. According to this concept, cells would have molecular systems ("flux(More)
The disadvantages of highly flexible endoureteral (double J) stents in the face of tumor-induced extrinsic ureteral compression are a consequence of insufficient cross-sectional stability, leading to stent compression and thus to hydronephrosis or pyonephrosis. The newly developed tumor stent, which is used in cases of tumor-induced ureteral compression, is(More)
  • 1