Benjamin S. Felzer

Learn More
[1] We develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in high-latitude soils of the Northern Hemisphere have changed over the past century in response to observed changes in the region’s climate. We estimate that the net emissions of CH4 (emissions minus consumption) from(More)
A number of observational studies indicate that carbon sequestration by terrestrial ecosystems in a world with an atmosphere richer in carbon dioxide and a warmer climate depends on the interactions between the carbon and nitrogen cycles. However, most terrestrial ecosystem models being used in climate-change assessments do not take into account these(More)
A global biofuels program will lead to intense pressures on land supply and can increase greenhouse gas emissions from land-use changes. Using linked economic and terrestrial biogeochemistry models, we examined direct and indirect effects of possible land-use changes from an expanded global cellulosic bioenergy program on greenhouse gas emissions over the(More)
We used a biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to study the net methane (CH4) fluxes between Alaskan ecosystems and the atmosphere. We estimated that the current net emissions of CH4 (emissions minus consumption) from Alaskan soils are approximately 3 Tg CH4/yr. Wet tundra ecosystems are responsible for 75% of the region's net(More)
[1] Terrestrial ecosystems of the northern high latitudes (above 50 N) exchange large amounts of CO2 and CH4 with the atmosphere each year. Here we use a process-based model to estimate the budget of CO2 and CH4 of the region for current climate conditions and for future scenarios by considering effects of permafrost dynamics, CO2 fertilization of(More)
[1] We investigated the potential effects of elevated ozone (O3) along with climate variability, increasing CO2, and land use change on net primary productivity (NPP) and carbon storage in China’s terrestrial ecosystems for the period 1961–2000 with a processbased Dynamic Land Ecosystem Model (DLEM) forced by the gridded data of historical tropospheric O3(More)
Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected, there can be important economic consequences. We examine the combined effects of changes in climate, increases in carbon dioxide (CO2), and changes in tropospheric ozone on crop, pasture, and forest(More)
In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NOx, which are also a source of nitrogen deposition.(More)
www.frontiersinecology.org © The Ecological Society of America B temporal or spatial scientific investigations, such as those represented by macrosystems ecology (MSE) projects, address very complex problems that require the collection and synthesis of data from many sources, the collaboration of people from diverse disciplines, and the application of(More)
Observed intensification of precipitation extremes, responsible for extensive societal impacts, are widely attributed to anthropogenic sources, which may include indirect effects of agricultural irrigation. However quantifying the effects of irrigation on far-downstream climate remains a challenge. We use three paired Community Earth System Model(More)