Learn More
Spoken Language Systems at Saarland University (LSV) participated this year with 5 runs at the TAC KBP English slot filling track. Effective algorithms for all parts of the pipeline, from document retrieval to relation prediction and response post-processing, are bundled in a modular end-to-end relation extraction system called RelationFactory. The main run(More)
Knowledge base (KB) completion adds new facts to a KB by making inferences from existing facts, for example by inferring with high likelihood nationality(X,Y) from bornIn(X,Y). Most previous methods infer simple one-hop relational synonyms like this, or use as evidence a multi-hop re-lational path treated as an atomic feature, like bornIn(X,Z) →(More)
This paper presents a probabilistic model for sense disambiguation which chooses the best sense based on the conditional probability of sense paraphrases given a context. We use a topic model to decompose this conditional probability into two conditional probabilities with latent variables. We propose three different instanti-ations of the model for solving(More)
Universal schema builds a knowledge base (KB) of entities and relations by jointly embedding all relation types from input KBs as well as textual patterns observed in raw text. In most previous applications of universal schema, each textual pattern is represented as a single embedding, preventing generalization to unseen patterns. Recent work employs a(More)
We address relation classification in the context of slot filling, the task of finding and evaluating fillers like " Steve Jobs " for the slot X in " X founded Apple ". We propose a convo-lutional neural network which splits the input sentence into three parts according to the relation arguments and compare it to state-of-the-art and traditional approaches(More)
Distant supervision is a scheme to generate noisy training data for relation extraction by aligning entities of a knowledge base with text. In this work we combine the output of a discriminative at-least-one learner with that of a generative hierarchical topic model to reduce the noise in distant supervision data. The combination significantly increases the(More)
As a low-cost ressource that is up-to-date, Wikipedia recently gains attention as a means to provide cross-language brigding for information retrieval. Contradictory to a previous study, we show that standard Latent Dirichlet Allocation (LDA) can extract cross-language information that is valuable for IR by simply normalizing the training data. Furthermore,(More)
We present RelationFactory, a highly effective open source relation extraction system based on shallow modeling techniques. RelationFactory emphasizes mod-ularity, is easily configurable and uses a transparent pipelined approach. The interactive demo allows the user to pose queries for which RelationFactory retrieves and analyses contexts that contain(More)
We survey recent approaches to noise reduction in distant supervision learning for relation extraction. We group them according to the principles they are based on: at-least-one constraints, topic-based models, or pattern correlations. Besides describing them, we illustrate the fundamental differences and attempt to give an outlook to potentially fruitful(More)
Traditional approaches to knowledge base completion have been based on symbolic representations. Low-dimensional vector embedding models proposed recently for this task are attractive since they generalize to possibly unlimited sets of relations. A significant drawback of previous embedding models for KB completion is that they merely support reasoning on(More)