Learn More
Suppose that one observes an incomplete subset of entries selected from a low-rank matrix. When is it possible to complete the matrix and recover the entries that have not been seen? We demonstrate that in very general settings, one can perfectly recover all of the missing entries from most sufficiently large subsets by solving a convex programming problem(More)
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved(More)
In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of(More)
Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-of-the-art performance on a variety of machine learning tasks. Several researchers have recently proposed schemes to parallelize SGD, but all require performance-destroying memory locking and synchronization. This work aims to show using novel theoretical analysis, algorithms,(More)
This paper investigates the problem of estimating the frequency components of a mixture of s complex sinusoids from a random subset of n regularly spaced samples. Unlike previous work in compressed sensing, the frequencies are not assumed to lie on a grid, but can assume any values in the normalized frequency domain [0, 1]. An atomic norm minimization(More)
This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candès and Recht [3], Candès and Tao [6], and Keshavan, Montanari, and Oh [13]. The reconstruction is accomplished by minimizing the nuclear norm, or sum of the singular values, of(More)
We consider the problem of recovering two unknown vectors, w and x, of length L from their circular convolution. We make the structural assumption that the two vectors are members of known subspaces, one with dimension N and the other with dimension K. Although the observed convolution is nonlinear in both w and x, it is linear in the rank-1 matrix formed(More)
In this paper we consider sparsity on a tensor level, as given by the n-rank of a tensor. In the important sparse-vector approximation problem (compressed sensing) and the low-rank matrix recovery problem, using a convex relaxation technique proved to be a valuable solution strategy. Here, we will adapt these techniques to the tensor setting. We use the(More)
Motivated by recent work on atomic norms in inverse problems, we propose a new approach to line spectral estimation that provides theoretical guarantees for the mean-squared-error (MSE) performance in the presence of noise and without knowledge of the model order. We propose an abstract theory of denoising with atomic norms and specialize this theory to(More)