Learn More
Understanding cortical information processing in Huntington's disease (HD), a genetic neurological disorder characterized by prominent motor and cognitive abnormalities, is key to understanding the mechanisms underlying the HD behavioral phenotype. We recorded extracellular spike activity in two symptomatic, freely behaving mouse models: R6/2 transgenics,(More)
Huntington's disease (HD) is an autosomal dominant condition that compromises behavioral output. Dysfunction of medium spiny neurons (MSNs), which are the sole output system of the striatum, is thought to underlie HD pathophysiology. What is not known is how HD alters MSN information processing during behavior, which likely drives the HD behavioral(More)
The striatum, which processes cortical information for behavioral output, is a key target of Huntington's disease (HD), an autosomal dominant condition characterized by cognitive decline and progressive loss of motor control. Increasing evidence implicates deficient glutamate uptake caused by a down-regulation of GLT1, the primary astroglial glutamate(More)
Altered neuronal activity in the striatum appears to be a key component of Huntington's disease (HD), a fatal, neurodegenerative condition. To assess this hypothesis in freely behaving transgenic rats that model HD (tgHDs), we used chronically implanted micro-wires to record the spontaneous activity of striatal neurons. We found that relative to wild-type(More)
A corticostriatal-dependent deficit in the release of ascorbate (AA), an antioxidant vitamin and neuromodulator, occurs concurrently in striatum with dysfunctional GLT1-dependent uptake of glutamate in the R6/2 mouse model of Huntington's disease (HD), an autosomal dominant condition characterized by overt corticostriatal dysfunction. To determine if(More)
A behavior-related deficit in the release of ascorbate (AA), an antioxidant vitamin, occurs in the striatum of R6/2 mice expressing the human mutation for Huntington's disease (HD), a dominantly inherited condition characterized by striatal dysfunction. To determine the role of corticostriatal fibers in AA release, we combined slow-scan voltammetry with(More)
Methylphenidate (MPH) is the drug of choice in the treatment of attention deficit and hyperactivity disorders. Although a popular drug, concentration-dependent electrophysiological alteration or impairment (functional toxicity) and reversibility, have not been quantified. This study used spontaneously active neuronal networks growing on microelectrode(More)
BACKGROUND Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by cortico-striatal dysfunction and loss of glutamate uptake. At 7 weeks of age, R6/2 mice, which model an aggressive form of juvenile HD, show a glutamate-uptake deficit in striatum that can be reversed by treatment with ceftriaxone, a beta-lactam antibiotic that(More)
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that targets the corticostriatal system and results in progressive deterioration of cognitive, emotional, and motor skills. Although cortical and striatal neurons are widely studied in animal models of HD, there is little information on neuronal function during expression of the(More)
Ethological assessment of murine models of Huntington's disease (HD), an inherited neurodegenerative disorder, enables correlation between phenotype and pathophysiology. Currently, the most characterized model is the R6/2 line that develops a progressive behavioral and neurological phenotype by 6 weeks of age. A recently developed knock-in model with 140(More)