Benjamin R G Johnson

Learn More
Tethered bilayer lipid membranes (tBLM) are formed on 1) pure tether lipid triethyleneoxythiol cholesterol (EO(3)C) or on 2) mixed self-assembled monolayers (SAMs) of EO(3)C and 6-mercaptohexanol (6MH). While EO(3)C is required to form a tBLM with high resistivity, 6MH dilutes the cholesterol content in the lower leaflet of the bilayer forming ionic(More)
We report on the use of supported lipid bilayers to reveal dynamics of actin polymerization from a nonpolymerizing subphase via cationic phospholipids. Using varying fractions of charged lipid, lipid mobility, and buffer conditions, we show that dynamics at the nanoscale can be used to control the self-assembly of these structures. In the case of(More)
Ultra-small gold nanoclusters (AuNCs) have unique size-dependent optical, electrical and chemical properties. They have emerged as a new nanomaterial with broad applications in optoelectronics, catalysis, biosensing, and bioimaging. Several strategies have been exploited to prepare AuNCs of different "magic number" sizes, using different templates e.g.(More)
Micron sized, lipid stabilized bubbles of gas are of interest as contrast agents for ultra-sound (US) imaging and increasingly as delivery vehicles for targeted, triggered, therapeutic delivery. Microfluidics provides a reproducible means for microbubble production and surface functionalisation. In this study, microbubbles are generated on chip using(More)
Aβ (amyloid-β peptide) assembles to form amyloid fibres that accumulate in senile plaques associated with AD (Alzheimer's disease). The major constituent, a 42-residue Aβ, has the propensity to assemble and form soluble and potentially cytotoxic oligomers, as well as ordered stable amyloid fibres. It is widely believed that the cytotoxicity is a result of(More)
Preferential binding of F-actin to lipid bilayers containing ponticulin was investigated on both planar supported bilayers and on a cholesterol-based tethering system. The transmembrane protein ponticulin in Dictyostelium discoideum is known to provide a direct link between the actin cytoskeleton and the cell membrane ( Wuestehube, L. J. ; Luna, E. J. J.(More)
Membrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J. Mol. Biol.2001, 305, 567).(More)
Phospholipid vesicles containing ponticulin have been used to form solid supported and tethered bilayer lipid membranes. The ponticulin serves as both a nucleation site for actin polymerization as well as a binding site for F-actin. Studies of F-actin binding to such bilayers have demonstrated the formation of an in vitro actin scaffold. The dissociation(More)
Solid-supported bilayer lipid membranes (SBLMs) containing membrane protein have been generated through a simple lipid dilution technique. SBLM formation from mixtures of native Escherichia coli bacterial inner membrane (IM) vesicles diluted with egg phosphatidylcholine (egg PC) vesicles has been explored with dissipation enhanced quartz crystal(More)