Learn More
Channelrhodopsin-2 (ChR2) is a light-gated, cation-selective ion channel isolated from the green algae Chlamydomonas reinhardtii. Here, we report the generation of transgenic mice that express a ChR2-YFP fusion protein in the CNS for in vivo activation and mapping of neural circuits. Using focal illumination of the cerebral cortex and olfactory bulb, we(More)
Brain function emerges from the morphologies, spatial organization and patterns of connectivity established between diverse sets of neurons. Historically, the notion that neuronal structure predicts function stemmed from classic histological staining and neuronal tracing methods. Recent advances in molecular genetics and imaging technologies have begun to(More)
Rodents begin to use bilaterally coordinated, rhythmic sweeping of their vibrissae ("whisking") for environmental exploration around 2 weeks after birth. Whether (and how) the vibrissal control circuitry changes after birth is unknown, and the relevant premotor circuitry remains poorly characterized. Using a modified rabies virus transsynaptic tracing(More)
Here we describe a knock-in mouse model for Cre-loxP-based conditional expression of TRPV1 in central nervous system neurons. Expression of Cre recombinase using biolistics, lentivirus or genetic intercrosses triggered heterologous expression of TRPV1 in a cell-specific manner. Application of the TRPV1 ligand capsaicin induced strong inward currents,(More)
The ability to control the electrical activity of a neuronal subtype is a valuable tool in deciphering the role of discreet cell populations in complex neural circuits. Recent techniques that allow remote control of neurons are either labor intensive and invasive or indirectly coupled to neural electrical potential with low temporal resolution. Here we show(More)
The vertebrate cranial neural crest cells give rise to many complex derivatives of the head, neck, and face, including neuronal and glial cells that act in concert for proper development of the anterior-peripheral nervous system. Several genes have been implicated in the processes of neural crest specification, migration, and differentiation; among these(More)
Proper brain function relies on exquisite balance between excitation and inhibition, where inhibitory circuits play fundamental roles toward sculpting principle neuron output and information processing. In prominent models of olfactory bulb circuitry, inhibition of mitral cells by local interneurons sharpens odor tuning and provides contrast enhancement.(More)
The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory(More)
When facing stress, most individuals are resilient whereas others are prone to developing mood disorders. The brain mechanisms underlying such divergent behavioral responses remain unclear. Here we used the learned helplessness procedure in mice to examine the role of the medial prefrontal cortex (mPFC), a brain region highly implicated in both clinical and(More)
The ability to chronically monitor neuronal activity in the living brain is essential for understanding the organization and function of the nervous system. The genetically encoded green fluorescent protein-based calcium sensor GCaMP provides a powerful tool for detecting calcium transients in neuronal somata, processes, and synapses that are triggered by(More)