Benjamin Mitchinson

Learn More
In this paper, we present two versions of a hardware processing architecture for modeling large networks of leaky-integrate-and-flre (LIF) neurons; the second version provides performance enhancing features relative to the first. Both versions of the architecture use fixed-point arithmetic and have been implemented using a single field-programmable gate(More)
We describe a novel, biomimetic tactile sensing system modeled on the facial whiskers (vibrissae) of animals such as rats and mice. The “BIOTACT Sensor” consists of a conical array of modular, actuated hair-like elements, each instrumented at the base to accurately detect deflections of the shaft by whisker-surface contacts. A notable(More)
For transmission of digital data over a linear channel with additive white noise, it can be shown that the optimal symboldecision equalizer is nonlinear. The Kernel Adaline algorithm, a nonlinear generalization of Widrow’s and Hoff’s Adaline, is capable of learning arbitrary nonlinear decision boundaries while retaining the desirable convergence properties(More)
The Whiskerbot project is a collaborative project between robotics engineers, computational neuroscientists and ethologists, aiming to build a biologically inspired robotic implementation of the rodent whisker sensory system. The morphology and mechanics of the large whiskers (macro-vibrissae) have been modeled, as have the neural structures that constitute(More)
Actuated artificial whiskers modeled on rat macrovibrissae can provide effective tactile sensor systems for autonomous robots. This article focuses on texture classification using artificial whiskers and addresses a limitation of previous studies, namely, their use of whisker deflection signals obtained under relatively constrained experimental conditions.(More)
The implementation of a large scale, leaky-integrate-and-fire neural network processor using the Xilinx Virtex-II family of field programmable gate array (FPGA) is presented. The processor has been designed to model biologically plausible networks of spiking neurons in real-time to assist with the control of a mobile robot. The real-time constraint has led(More)
Computational modellers are becoming increasingly interested in building large, eclectic, biological models. These may integrate nervous system components at various levels of description, other biological components (e.g. muscles), non-biological components (e.g. statistical discriminators or control software) and, in embodied modelling, even hardware(More)
Animal behaviour is rich, varied, and smoothly integrated. One plausible model of its generation is that behavioural sub-systems compete to command effectors. In small terrestrial mammals, many behaviours are underpinned by foveation, since important effectors (teeth, tongue) are co-located with foveal sensors (microvibrissae, lips, nose), suggesting a(More)
In previous work, we constructed a simple electro-mechanical model of transduction in the rat mystacial follicle that was able to replicate primary afferent response profiles to a variety of whisker deflection stimuli. Here, we update that model to fit newly available spike-timing response data, and demonstrate that the new model produces appropriate(More)