Benjamin M. Rottman

Learn More
Seven studies examined how people learn causal relationships in scenarios when the variables are temporally dependent - the states of variables are stable over time. When people intervene on X, and Y subsequently changes state compared to before the intervention, people infer that X influences Y. This strategy allows people to learn causal structures(More)
When testing which of multiple causes (e.g., medicines) works best, the testing sequence has important implications for the validity of the final judgment. Trying each cause for a period of time before switching to the other is important if the causes have tolerance, sensitization, delay, or carryover (TSDC) effects. In contrast, if the outcome variable is(More)
OBJECTIVE This article examined, using theories from cognitive science, the clinical utility of the Five-Factor Model (FFM) of Personality, an assessment and classification system under consideration for integration into the forthcoming fifth edition of the Diagnostic and Statistical Manual (DSM) of Mental Disorders. Specifically, the authors sought to test(More)
Over the last decade, a normative framework for making causal inferences, Bayesian Probabilistic Causal Networks, has come to dominate psychological studies of inference based on causal relationships. The following causal networks-[X→Y→Z, X←Y→Z, X→Y←Z]-supply answers for questions like, "Suppose both X and Y occur, what is the probability Z occurs?" or(More)
We investigated the understanding of causal systems categories--categories defined by common causal structure rather than by common domain content--among college students. We asked students who were either novices or experts in the physical sciences to sort descriptions of real-world phenomena that varied in their causal structure (e.g., negative feedback(More)
We introduce two abstract, causal schemata used during causal learning. (1) Tolerance is when an effect diminishes over time, as an entity is repeatedly exposed to the cause (e.g., a person becoming tolerant to caffeine). (2) Sensitization is when an effect intensifies over time, as an entity is repeatedly exposed to the cause (e.g., an antidepressant(More)
The ability to learn the direction of causal relations is critical for understanding and acting in the world. We investigated how children learn causal directionality in situations in which the states of variables are temporally dependent (i.e., autocorrelated). In Experiment 1, children learned about causal direction by comparing the states of one variable(More)
We adapted a method from developmental psychology to explore whether capuchin monkeys (Cebus apella) would place objects on a "blicket detector" machine to diagnose causal relations in the absence of a direct reward. Across five experiments, monkeys could place different objects on the machine and obtain evidence about the objects' causal properties based(More)
When a cause interacts with unobserved factors to produce an effect, the contingency between the observed cause and effect cannot be taken at face value to infer causality. Yet, it would be computationally intractable to consider all possible unobserved, interacting factors. Nonetheless, two experiments found that when an unobserved cause is assumed to be(More)