Benjamin Loubet

Learn More
The stomatal compensation point of ammonia (χs) is a major factor controlling the exchange of atmospheric ammonia (NH3) with vegetation. It is known to depend on the supply of nitrogen and to vary among plant species, but its seasonal variation has not yet been reported for grassland. In this study, we present the temporal variation of apoplastic NH4 +(More)
The introduction of genetically modified (GM) crops has reinforced the need to quantify gene flow from crop to crop. This requires predictive tools which take into account meteorological conditions, canopy structure as well as pollen aerodynamic characteristics. A Lagrangian Stochastic (LS) model, called SMOP-2D (Stochastic Mechanistic mOdel for Pollen(More)
The coexistence of genetically modified (GM) crops with conventional crops has become a subject of debate and inquiry. Maize (Zea mays L.) is one of the most cultivated crop plants in the world and there is a need to assess the risks of cross-pollination. Concentration and deposition rate downwind from different-sized maize crops were measured during three(More)
Recent research in nitrogen exchange with the atmosphere has separated research communities according to N form. The integrated perspective needed to quantify the net effect of N on greenhouse-gas balance is being addressed by the NitroEurope Integrated Project (NEU). Recent advances have depended on improved methodologies, while ongoing challenges include(More)
Few data sets of pesticide volatilization from plants at the field scale are available. In this work, we report measurements of fenpropidin and chlorothalonil volatilization on a wheat field using the aerodynamic gradient (AG) method and an inverse dispersion modeling approach (using the FIDES model). Other data necessary to run volatilization models are(More)
The ammonia stomatal compensation point of plants is determined by leaf temperature, ammonium concentration ([NH4+]apo) and pH of the apoplastic solution. The later two depend on the adjacent cells metabolism and on leaf inputs and outputs through the xylem and phloem. Until now only empirical models have been designed to model the ammonia stomatal(More)
Ammonia sources and sinks in an intensively managed grassland using dynamic chambers M. David, B. Loubet, P. Cellier, M. Mattsson, J. K. Schjoerring, E. Nemitz, R. Roche, M. Riedo, and M. A. Sutton Institut National de la Recherche Agronomique, UMR Environnement et Grandes Cultures, 78850, Thiverval-Grignon, France Plant and Soil Science Laboratory,(More)
Determinations of the NH(3) compensation point for the understory plant of semi-natural woodlands Luzula sylvatica (Huds.) Gaud. were carried out by measurements of gas exchange and by calculation from the NH(4)(+) concentration and pH of extracts of the foliar apoplast. Compensation points determined by gas exchange measurements were among the lowest yet(More)
Agricultural livestock represents the main source of ammonia (NH3) in Europe. In recent years, reduction policies have been applied to reduce NH3 emissions. In order to estimate the impacts of these policies, robust estimates of the emissions from the main sources, i.e. livestock farms are needed. In this paper, the NH3 emissions were estimated from a(More)