Learn More
Leaf area index (LAI) is a key variable for the understanding of several eco-physiological processes within a vegetation canopy. The LAI could thus provide vital information for the management of the environment and agricultural practices when estimated continuously over time and space thanks to remote sensing sensors. This study proposed a method to(More)
—A terrestrial laser scanner (TLS) was used to measure canopy directional gap fraction distribution in forest stands in the Swiss National Park, eastern Switzerland. A scanner model was derived to determine the expected number of laser shots in all directions, and these data were compared with the measured number of laser hits to determine directional gap(More)
Both Imaging Spectrometry and LIDAR have been already investigated as independent data sources to describe and quantify forests properties. While Imaging Spectrometry provides information on the biochemical and biophysical properties of the canopy, LIDAR resolves the spatial and vertical distribution of the canopy structure (1, 2). The presented(More)
Accurate description of wildland fuel types and fuel properties is vital for understanding the processes involved in initiation and propagation of forest fires (Carlson and Burgan, 2003). Fire behaviour models based on the spatial distribution of fuel properties can predict the probability of fire initialization and the characteristics of fire behaviour(More)
/RESUME The spaceborne ESA-mission CHRIS/PROBA (Compact High Resolution Imaging Spectrometer-Project for On-board Autonomy) provides hyperspectral and multidirectional data of selected targets spread over the world. While the spectral information content of CHRIS/PROBA data is able to assess the biochemistry of a vegetation canopy, the directional(More)
The spaceborne ESA-mission CHRIS-Proba (Compact High Resolution Imaging Spectrometer-Project for On-Board Autonomy) provides hyperspectral and multi-directional data of selected targets spread over the world. While the spectral information content of CHRIS/Proba data is able to assess the biochemistry of a vegetation canopy, the directional information can(More)
The OLIVE (On Line Interactive Validation Exercise) platform is dedicated to the validation of global biophysical products such as LAI (Leaf Area Index) and FAPAR (Fraction of Absorbed Photosynthetically Active Radiation). It was developed under the framework of the CEOS (Committee on Earth Observation Satellites) Land Product Validation (LPV) subgroup.(More)