Benjamin Kilian

Learn More
As early farming spread from the Fertile Crescent in the Near East around 10,000 years before the present, domesticated crops encountered considerable ecological and environmental change. Spring-sown crops that flowered without the need for an extended period of cold to promote flowering and day length-insensitive crops able to exploit the longer, cooler(More)
The origin of modern wheats involved alloploidization among related genomes. To determine if Aegilops speltoides was the donor of the B and G genomes in AABB and AAGG tetraploids, we used a 3-tiered approach. Using 70 amplified fragment length polymorphism (AFLP) loci, we sampled molecular diversity among 480 wheat lines from their natural habitats(More)
Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) provide a promising tool for the detection and fine mapping of quantitative trait loci (QTL) underlying complex agronomic traits. In this study we explored the genetic basis of variation for the traits heading date, plant height, thousand grain weight, starch content and crude(More)
The transition from hunting and gathering to agriculture had revolutionary consequences for the development of human societies. Crops such as wheat, barley, lentil, pea and chickpea played a crucial role in the establishment of complex civilizations in south west Asia. Wild emmer wheat (Triticum dicoccoides) was one of the first cereals to be domesticated(More)
Using Roche/454 technology, we sequenced the chloroplast genomes of 12 Triticeae species, including bread wheat, barley and rye, as well as the diploid progenitors and relatives of bread wheat Triticum urartu, Aegilops speltoides and Ae. tauschii. Two wild tetraploid taxa, Ae. cylindrica and Ae. geniculata, were also included. Additionally, we incorporated(More)
Archaeological remains indicate that the origin of western agriculture occurred in a brief period about 10,500 years ago in a region of the Middle East known as the Fertile Crescent, where the wild progenitors of several key agricultural cereal species are endemic. Domestication entailed the appearance of agronomic traits such as seed size and(More)
Vast germplasm collections are accessible but their use for crop improvement is limited-efficiently accessing genetic diversity is still a challenge. Molecular markers have clarified the structure of genetic diversity in a broad range of crops. Recent developments have made whole-genome surveys and gene-targeted surveys possible, shedding light on(More)
Advanced resources for genome-assisted research in barley (Hordeum vulgare) including a whole-genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole-genome resequencing and in silico variant detection. However such an(More)
A spring barley collection of 192 genotypes from a wide geographical range was used to identify quantitative trait loci (QTLs) for salt tolerance traits by means of an association mapping approach using a thousand SNP marker set. Linkage disequilibrium (LD) decay was found with marker distances spanning 2–8 cM depending on the methods used to account for(More)
The control of flowering time has important impacts on crop yield. The variation in response to day length (photoperiod) and low temperature (vernalization) has been selected in barley to provide adaptation to different environments and farming practices. As a further step towards unraveling the genetic mechanisms underlying flowering time control in(More)