Learn More
Broadband wireless access systems deployed in residential and business environments are likely to face hostile radio propagation environments , with multipath delay spread extending over tens or hundreds of bit intervals. Orthogonal frequency-division multiplex (OFDM) is a recognized multicarrier solution to combat the effects of such multipath conditions.(More)
Cell polarity is critical in various cellular processes ranging from cell migration to asymmetric cell division and axon and dendrite specification. Similarly, myelination by Schwann cells is polarized, but the mechanisms involved remain unclear. Here, we show that the polarity protein Par-3 localizes asymmetrically in Schwann cells at the axon-glial(More)
Fluorescence digital imaging microscopy was used to develop a method that allows the continuous monitoring and quantitative measurement of a single myelin internode throughout its development. Using this technique, steroid hormones such as progesterone and dexamethasone were shown to reduce the time required for the initiation and to regulate the rate of(More)
Myelination is dependent on complex reciprocal interactions between the Schwann cell (SC) and axon. Recent evidence suggests that the SC-axon interface represents a membrane specialization essential for myelination; however, the manner in which this polarized-apical domain is generated remains a mystery. The cell adhesion molecule N-cadherin is enriched at(More)
The neurotrophin brain-derived neurotrophic factor (BDNF) inhibits Schwann cell (SC) migration and promotes myelination via the p75 neurotrophin receptor (NTR). Despite these recent findings, the expression, localization, and mechanism of BDNF action has yet to be determined. Here we demonstrate that the sensory neurons of the dorsal root ganglion (DRG) are(More)
The formation of myelin is dependent on a reciprocal and intimate relationship between neurons and the myelin-forming glia. Recently, the neurotrophin family of growth factors has been shown to regulate the complex cell-cell interactions that control myelination. Neurotrophins and their receptors influence myelin formation via two distinct mechanisms,(More)