Benjamin K. Dichter

Learn More
Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations.(More)
Exponential-family harmoniums (EFHs), which extend restricted Boltzmann machines (RBMs) from Bernoulli random variables to other exponential families (Welling et al., 2005), are generative models that can be trained with unsupervised-learning techniques, like contrastive divergence (Hinton et al., 2006; Hinton, 2002), as density estimators for static data.(More)
A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is(More)
Brain Computer Interfaces (BCIs) assist individuals with motor disabilities by enabling them to control prosthetic devices with their neural activity. Performance of closed-loop BCI systems can be improved by using design strategies that leverage structured and task-relevant neural activity. We use data from high density electrocorticography (ECoG) grids(More)
Brain-machine interfaces (BMIs) have great potential for applications that restore and assist communication for paralyzed individuals. Recently, BMIs decoding speech have gained considerable attention due to their potential for high information transfer rates. In this study, we propose a novel decoding approach based on hidden Markov models (HMMs) that uses(More)
UNLABELLED Accurate sensory discrimination is commonly believed to require precise representations in the nervous system; however, neural stimulus responses can be highly variable, even to identical stimuli. Recent studies suggest that cortical response variability decreases during stimulus processing, but the implications of such effects on stimulus(More)
  • 1