Benjamin J. Bruno

Learn More
The oncoprotein Bcr-Abl drives aberrant downstream activity through trans-autophosphorylation of homo-oligomers in chronic myelogenous leukemia (CML).(1, 2) The formation of Bcr-Abl oligomers is achieved through the coiled-coil domain at the N-terminus of Bcr.(3, 4) We have previously reported a modified version of this coiled-coil domain, CCmut2, which(More)
AIM Small for gestational age neonates (SGA) could be subdivided into two groups according to the underlying causes leading to low birth weight. Intrauterine growth restriction (IUGR) is a pathologic condition with diminished growth velocity and fetal compromised well-being, while non-growth restricted SGA neonates are constitutionally (genetically(More)
Oligomerization is an important regulatory mechanism for many proteins, including oncoproteins and other pathogenic proteins. The oncoprotein Bcr-Abl relies on oligomerization via its coiled coil domain for its kinase activity, suggesting that a designed coiled coil domain with enhanced binding to Bcr-Abl and reduced self-oligomerization would be(More)
While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors,(More)
In 2012, ponatinib (Iclusig(®)), an orally available pan-BCR-ABL tyrosine kinase inhibitor (TKI) developed by ARIAD Pharmaceuticals, Inc., was approved by the US Food and Drug Administration for use in resistant or intolerant chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+)ALL). Ponatinib is the only(More)
Mitochondria are organelles that have pivotal functions in producing the energy necessary for life and executing the cell death pathway. Targeting drugs and macromolecules to the mitochondria may provide an effective means of inducing cell death for cancer therapy, and has been actively pursued in the last decade. This review will provide a brief overview(More)
Targeted therapy of chronic myeloid leukemia (CML) is currently based on small-molecule inhibitors that directly bind the tyrosine kinase domain of BCR-ABL1. This strategy has generally been successful, but is subject to drug resistance because of point mutations in the kinase domain. Kinase activity requires transactivation of BCR-ABL1 following an(More)
The application of thiol-yne/thiol-ene reactions to synthesize mono- and bicyclic-stapled peptides and proteins is reported. First, a thiol-ene-based peptide-stapling method in aqueous conditions was developed. This method enabled the efficient stapling of recombinantly expressed coil-coiled proteins. The resulting stapled protein demonstrated higher(More)
License. The full terms of the License are available at Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information(More)
The oncoprotein Bcr-Abl is the cause of chronic myeloid leukemia (CML).1 Current therapies target the tyrosine kinase domain of Bcr-Abl, but resistance to these drugs is common.2 Bcr-Abl homo-oligomerization via its N-terminal coiled-coil (CC) domain is required for tyrosine kinase activity.3 Our previous work has shown that it is possible to inhibit(More)